Structural and acidic characteristics of Cu-Ni-modified acid-leached mordenites.

J Colloid Interface Sci

Chemistry Department, Faculty of Science, Benha University, Benha, Egypt.

Published: September 2003

Two series of dealuminated Na-mordenite zeolites (DML and DMH) were impregnated, in comparison with the parent nondealuminated NaMSP, in aqueous nitrate solutions of Cu and Ni to achieve varying loadings for both of the cations. These samples were characterized by N(2) adsorption, XRD, DSC of ammonia desorption, ammonia volumetric sorption, IR of ammonia adsorption, and FTIR-photoacoustic (FTIR-PAS) techniques. The FTIR-PAS spectrum of CuNi-loaded NaMSP shows a band at 935 cm(-1) ascribed to O(3)Siz.sbnd;Oz.sbnd;SiO(3) linkages produced as a result of dealumination caused by the synergistic effect of Cu and Ni cations under the preparation conditions. As a confirmation, this band was intensified upon acid dealumination (DML) where, at the extent of dealumination (DMH), collapsing of the zeolite structure was obtained subsequent to cation modification. In addition, the dealumination effect was markedly enhanced upon increasing the load of Cu in proportion to Ni. A total erosion of OH group characteristics of Siz.sbnd;(OH)z.sbnd;Al at 3610 cm(-1) was depicted when the Ni content exceed that of Cu where it did not show any change when the Cu content surpasses that of Ni. The amount of adsorbed ammonia measured volumetrically was enlarged after dealumination as well as after increasing the contents of the modificating cations. The IR study of ammonia adsorption revealed a band at 1428 cm(-1), in either nondealuminated or dealuminated-modified samples, assigned to stronger Bronsted acid sites than those at 1455 cm(-1). The band at 1428 cm(-1) was markedly enhanced in the latter samples than in the former. This was due in part to the replacement of the protons by cations, producing sufficiently mobile protons. In conformity, DeltaH values obtained for DSC effects via ammonia desorption were enhanced after dealumination. Other correlations with XRD and surface texturing on one hand and the structural variations following cations incorporation on the other hand are evaluated and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9797(03)00075-4DOI Listing

Publication Analysis

Top Keywords

ammonia desorption
8
ammonia adsorption
8
markedly enhanced
8
band 1428
8
1428 cm-1
8
ammonia
6
dealumination
6
cations
5
cm-1
5
structural acidic
4

Similar Publications

Investigation of the Photocatalytic Activity of Copper-Modified Commercial Titania (P25) in the Process of Carbon Dioxide Photoreduction.

Materials (Basel)

December 2024

Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland.

The photocatalytic reduction of CO to useful products is an area of active research because it shows a potential to be an efficient tool for mitigating climate change. This work investigated the modification of titania with copper(II) nitrate and its impact on improving the CO reduction efficiency in a gas-phase batch photoreactor under UV-Vis irradiation. The investigated photocatalysts were prepared by treating P25-copper(II) nitrate suspensions (with various Cu concentrations), alkalized with ammonia water, in a microwave-assisted solvothermal reactor.

View Article and Find Full Text PDF

Boosting Electrocatalytic Nitrate Reduction to Ammonia on a Hierarchical Nanoporous Ag,Ni-Codoped Cu Catalyst via Trimetallic Synergistic and Nanopore Enrichment Effects.

Nano Lett

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

The electrochemical nitrate (NO) reduction reaction (NORR) offers a promising route for NO wastewater treatment and sustainable ammonia (NH) synthesis. However, the reaction still faces the challenges of unsatisfactory productivity and selectivity. Herein, we report a hierarchical nanoporous Ag,Ni-codoped Cu (np Ag,Ni-Cu) catalyst that exhibits a high NH Faradaic efficiency of 98.

View Article and Find Full Text PDF

Electrochemical reduction of naturally abundant nitrogen (N) under ambient conditions is a promising method for ammonia (NH) synthesis, while the development of a highly active, stable and low-cost catalyst remains a challenge. Herein, the N reduction reaction of TM@g-BCN in electrochemical nitrogen reduction has been systematically investigated using density functional theory (DFT) calculations and compared with that of TM@g-CN. It was found that TM atoms are more stably anchored to g-BCN than to g-CN.

View Article and Find Full Text PDF

Synergistic Enhancement of Plasma-Driven Ammonia Synthesis Using a AuCu/Cu Composite Catalyst.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Green ammonia synthesis using fluctuating renewable energy supply in decentralized process is a goal that has been long sought after. Ammonia synthesis with non-thermal plasma under mild conditions is a promising technology, but it faces the critical challenge of low energy efficiency. Herein, we develop an easily-scalable AuCu/Cu catalyst, which consists of a decimeter-scale metallic Cu antenna and nano-scale AuCu catalytic sites on metallic Cu surface, significantly enhancing the energy efficiency and ammonia yield in a radio-frequency (RF) plasma system.

View Article and Find Full Text PDF

Electrocatalytic nitrate reduction (ENORR) for ammonia production is one of the potential alternatives to Haber-Bosch technology for the realization of artificial ammonia synthesis. However, efficient ammonia production remains challenging due to the complex electron transfer process in ENORR. In this study, we fabricated a CuP/CoP heterostructure on carbon cloth (CC) by electrodeposition and vapor deposition, which exhibits an exceptional ENORR performance in alkaline medium, and showcases a Faradaic efficiency of ammonia (FE) and an ammonia yield rate as high as 97.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!