Ab-initio prediction and reliability of protein structural genomics by PROPAINOR algorithm.

Comput Biol Chem

BJM School of Bioscience and Bioengineering, Indian Institute of Technology, Powai, 400076, Mumbai, India.

Published: July 2003

We have formulated the ab-initio prediction of the 3D-structure of proteins as a probabilistic programming problem where the inter-residue 3D-distances are treated as random variables. Lower and upper bounds for these random variables and the corresponding probabilities are estimated by nonparametric statistical methods and knowledge-based heuristics. In this paper we focus on the probabilistic computation of the 3D-structure using these distance interval estimates. Validation of the predicted structures shows our method to be more accurate than other computational methods reported so far. Our method is also found to be computationally more efficient than other existing ab-initio structure prediction methods. Moreover, we provide a reliability index for the predicted structures too. Because of its computational simplicity and its applicability to any random sequence, our algorithm called PROPAINOR (PROtein structure Prediction by AI an Nonparametric Regression) has significant scope in computational protein structural genomics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0097-8485(02)00074-8DOI Listing

Publication Analysis

Top Keywords

ab-initio prediction
8
protein structural
8
structural genomics
8
random variables
8
predicted structures
8
structure prediction
8
prediction reliability
4
reliability protein
4
genomics propainor
4
propainor algorithm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!