EPR spectroscopy has been employed to study directly the selectivity of hydrogen-atom abstraction by some alkoxyl radicals from a variety of linear and branched alkanes, as well as linear alkenes, chosen as models for low molecular-weight polyolefin cross-linking systems. In situ thermal and photolytic approaches, as well as spin-trapping, have been employed to provide information relating to an accessible temperature range of 233-453 K. in part to mimic conditions relevant to melt processing of polyolefins. Rate constants (in the range 3 x 10(3)-3.7 x 10(5) dm3 mol-1 s-1 per hydrogen) have been determined for C-H abstraction at room temperature. Radical selectivity is largely governed by enthalpic effects (modelled via bond dissociation energy calculations and kinetic analysis). Direct evidence has been obtained for lack of reactivity, as a result of unfavourable steric interactions, for the secondary and tertiary C-H bonds in 2,4-dimethylpentane and 2,4,6-trimethylheptane, models for polypropylene. This has been rationalized via free-energy calculations using DFT.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b212543aDOI Listing

Publication Analysis

Top Keywords

polyolefin cross-linking
8
epr modelling
4
modelling studies
4
studies hydrogen-abstraction
4
hydrogen-abstraction reactions
4
reactions relevant
4
relevant polyolefin
4
cross-linking grafting
4
grafting chemistry
4
chemistry epr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!