The antitumor and metabolic activities of 2-(4-aminophenyl)benzothiazoles and their fluorinated analogues cannot be explained or predicted by conventional chemical means. Their mode of anti-cancer action involves metabolism of the benzothiazoles to an as yet unidentified reactive species. This species then forms DNA adducts which provoke cell death. The electronic structures and possible intermediates of these compounds have been computed quantum mechanically. The counter-intuitive patterns of metabolism can only be explained by considering the active intermediate to be a nitrenium ion. The distribution of the highest occupied molecular orbital for the nitrenium species derived from each fluorinated analogue correlates perfectly with the production, or otherwise, of an exportable metabolite. Further related compounds have been analyzed by this method and the predictions of their metabolism have subsequently been verified experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b209067hDOI Listing

Publication Analysis

Top Keywords

molecular orbital
8
antitumor benzothiazoles
4
benzothiazoles frontier
4
frontier molecular
4
orbital analysis
4
analysis predicts
4
predicts bioactivation
4
bioactivation 2-4-aminophenylbenzothiazoles
4
2-4-aminophenylbenzothiazoles reactive
4
reactive intermediates
4

Similar Publications

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Exploring the Impact of Structural Modifications of Phenothiazine-Based Novel Compounds for Organic Solar Cells: DFT Investigations.

Polymers (Basel)

January 2025

Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia.

This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and the end-group acceptors, respectively. We assess the impact of substituents by introducing bromine atoms at two potential substitution sites on each end-group acceptor (EG1 and EG2).

View Article and Find Full Text PDF

The Search for the Optimal Methodology for Predicting Fluorinated Cathinone Drugs NMR Chemical Shifts.

Molecules

December 2024

Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60, Będzińska, 41-200 Sosnowiec, Poland.

Cathinone and its synthetic derivatives belong to organic compounds with narcotic properties. Their structural diversity and massive illegal use create the need to develop new analytical methods for their identification in different matrices. NMR spectroscopy is one of the most versatile methods for identifying the structure of organic substances.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) with highly ordered structures and predictable optoelectronic properties provide an ideal platform to investigate the electrochemiluminescence (ECL) performance based on organic materials by atomically varying the molecular construction. Herein, the effect of imine-bond orientation on the ECL performance of COFs is investigated. We report two COFs (NC-COF and CN-COF) with different orientations of imine bonds using pyrene donor units (D) and bipyridine acceptor motifs (A) monomers.

View Article and Find Full Text PDF

Designer topological-single-atom catalysts with site-specific selectivity.

Nat Commun

January 2025

School of Materials Science and Engineering, Peking University, Beijing, P.R. China.

Designing catalysts with well-defined, identical sites that achieve site-specific selectivity, and activity remains a significant challenge. In this work, we introduce a design principle of topological-single-atom catalysts (T-SACs) guided by density functional theory (DFT) and Ab initio molecular dynamics (AIMD) calculations, where metal single atoms are arranged in asymmetric configurations that electronic shield topologically misorients d orbitals, minimizing unwanted interactions between reactants and the support surface. Mn/CeO catalysts, synthesized via a charge-transfer-driven approach, demonstrate superior catalytic activity and selectivity for NO removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!