A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A biodegradable electrical bioconductor made of polypyrrole nanoparticle/poly(D,L-lactide) composite: A preliminary in vitro biostability study. | LitMetric

A biodegradable electrical bioconductor made of polypyrrole nanoparticle/poly(D,L-lactide) composite: A preliminary in vitro biostability study.

J Biomed Mater Res A

Département de Chirurgie, Université Laval, Institut biomatériaux de Québec, Pavillon Saint-François d'Assise, Québec, Canada.

Published: September 2003

The electrical stability of a novel polypyrrole (PPy)/poly(D,L-lactide) (PDLLA) composite was studied in vitro and compared with that of PPy-coated polyester fabrics. Specimens were incubated in Ringer's solution at 37 degrees C for up to 8 weeks with or without the circulation of DC current under a constant 100 mV voltage. In situ current variation with incubation time was recorded. The AC volume electrical conductivity of the specimens before and after incubation in phosphate-buffered saline was recorded using a frequency analyzer. Water absorption and weight loss were monitored metrologically. Changes in the oxidation state of incubated PPy were analyzed with X-ray photoelectron spectroscopy. The morphological changes were observed with scanning electron microscopy, and the glass transition temperature of the PDLLA was investigated using differential scanning calorimetry. The PPy/PDLLA composite in Ringer's solution sustained a relatively stable conductivity up to 8 weeks after an initial period of "conditioning." The PPy-coated fabrics experienced a rapid loss of conductivity when subjected to electrical circulation and regained part of it when disconnected. The volume conductivity of the nonincubated PPy/PDLLA membrane behaved as a typical conductor in the low-frequency range. The mechanisms involved in the various electrical behaviours of the PPy/PDLLA composite and PPy-coated fabrics are discussed. In conclusion, the PPy/PDLLA composite was able to deliver a biologically significant electrical current in a simulated biological solution for up to 8 weeks and therefore may be considered as a first-generation synthetic biodegradable bioconductor.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.10037DOI Listing

Publication Analysis

Top Keywords

ppy/pdlla composite
12
ringer's solution
8
ppy-coated fabrics
8
composite
5
electrical
5
biodegradable electrical
4
electrical bioconductor
4
bioconductor polypyrrole
4
polypyrrole nanoparticle/polydl-lactide
4
nanoparticle/polydl-lactide composite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!