Background: BMP-2 (bone morphogenetic protein-2) signals via two types of transmembrane serine/threonine kinase receptors (BRI and BRII), which form heteromeric complexes prior to and after ligand binding. Within a BMP-bound receptor complex, BRII transphosphorylates and activates BRI-a for further signaling. We investigated which signaling pathway is initiated by BMP-2 via preformed receptor complexes versus BMP-2-induced signaling receptor complexes.

Methods: Immunofluorescence co-patching was used to study the oligomerization of receptors at the surface of live cells. Binding and chemical cross-linking of iodinated BMP-2 followed by immunoprecipitation was used to show association of receptors in the presence of ligand. Western blots with use of anti-phospho-Smad1 antibodies and reporter gene assays with use of SBE-lux were employed to show activation of the Smad pathway. Phosphorylation of p38-MAPK was shown by Western blots. Induction of alkaline phosphatase was determined by staining the cells. The cluster density of receptors was determined with use of image correlation spectroscopy.

Results And Conclusion: We showed that the Smad pathway is induced by preformed receptor complexes, whereas BMP-2-induced signaling complexes result in the activation of p38-MAPK. We also found evidence that the clustering of BRI-a at the membrane is altered in the presence of BRII, suggesting that it associates with existing clusters of BRII to initiate efficient Smad signaling. These data clearly demonstrate that it is critical to fully understand receptor oligomerization in order to estimate signaling outcome for distinct receptor and ligand mutants.

Download full-text PDF

Source
http://dx.doi.org/10.2106/00004623-200300003-00009DOI Listing

Publication Analysis

Top Keywords

preformed receptor
8
receptor complexes
8
bmp-2-induced signaling
8
western blots
8
smad pathway
8
signaling
7
receptor
6
complexes
5
initiation smad-dependent
4
smad-dependent smad-independent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!