Endothelium-dependent relaxation is frequently attenuated in hypertension. We hypothesized that the contribution of the endothelium-derived hyperpolarizing factor (EDHF) to the acetylcholine (ACh)-induced, endothelium-dependent relaxation is attenuated with aging in the renal artery of spontaneously hypertensive rats (SHR) compared with age-matched Wistar-Kyoto (WKY) rats. ACh-induced, NO-mediated relaxation was identical in young (8-week-old) WKY and SHR, whereas EDHF-mediated relaxations (assessed in the presence of Nomega-nitro-l-arginine and diclofenac) were much more pronounced in SHR than WKY. KCl-induced relaxations were more pronounced in vessels from young WKY rats than from young SHR. The cytochrome P450 inhibitor sulfaphenazole significantly inhibited EDHF-mediated relaxation in vessels from young SHR but not WKY. Vessels from old (22 months) SHR exhibited a slightly reduced NO-mediated relaxation but a complete loss of EDHF-mediated responses. In contrast, aging did not affect EDHF-mediated responses in WKY. Moreover, ACh-induced hyperpolarization and resting membrane potential were decreased in old SHR but not in WKY. KCl-induced relaxation increased with age in WKY, whereas no response to KCl was recorded in arteries from aged SHR. In vessels from old WKY but not old SHR, mRNA expression of the Na-K-ATPase subunit alpha2 was increased by 2-fold compared with young animals. These data indicate that the increase in EDHF responses in renal arteries from aged WKY can be attributed to the release of K+ ions from the endothelium, whereas increased EDHF responses in renal arteries from young SHR can be attributed to a sulfaphenazole-sensitive cytochrome P450-dependent EDHF.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.HYP.0000088852.28814.E2DOI Listing

Publication Analysis

Top Keywords

shr wky
12
young shr
12
shr
10
wky
10
spontaneously hypertensive
8
hypertensive rats
8
loss edhf-mediated
8
edhf-mediated relaxation
8
renal artery
8
endothelium-dependent relaxation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!