In the aorta, diabetes activates an osteogenic program that includes expression of bone morphogenetic protein-2 (BMP2) and the osteoblast homeoprotein Msx2. To evaluate BMP2-Msx2 signaling in vascular calcification, we studied primary aortic myofibroblasts. These cells express vascular smooth muscle cell (VSMC) markers, respond to BMP2 by up-regulating Msx2, and undergo osteogenic differentiation with BMP2 treatment or transduction with a virus encoding Msx2. The osteoblast factor osterix (Osx) is up-regulated 10-fold by Msx2, but Runx2 mRNA is unchanged; the early osteoblast marker alkaline phosphatase increases 50-fold with mineralized nodule formation enhanced 30-fold. Adipocyte markers are concomitantly suppressed. To better understand Msx2 actions on osteogenesis versus adipogenesis, mechanistic studies were extended to C3H10T1/2 mesenchymal cells. Msx2 enhances osteogenic differentiation in synergy with BMP2. Osteogenic actions depend upon intrinsic Msx2 DNA binding; the gain-of-function variant Msx2(P148H) directs enhanced mineralization, whereas the binding-deficient variant Msx2(T147A) is inactive. Adipogenesis (lipid accumulation, Pparg expression) is inhibited by Msx2. By contrast, suppression of adipogenesis does not require Msx2 DNA binding; inhibition occurs in part via protein-protein interactions with C/EBPalpha that control Pparg transcription. Thus, Msx2 regulates osteogenic versus adipogenic differentiation of aortic myofibroblasts. Myofibroblasts capable of both fates can be diverted to the osteogenic lineage by BMP2-Msx2 signaling and contribute to vascular calcification.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M306972200DOI Listing

Publication Analysis

Top Keywords

msx2
11
adipogenic differentiation
8
bmp2-msx2 signaling
8
vascular calcification
8
aortic myofibroblasts
8
osteogenic differentiation
8
msx2 dna
8
dna binding
8
osteogenic
6
msx2 promotes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!