As part of the development of disposable urea bioselective probes, the covalent binding of urease on ammonium-selective potentiometric membranes has been assessed. Nonactin/bis(1-butylpentyl)adipate/poly(vinylchloride) (PVC) membranes, directly applied to an internal solid contact (conductive epoxy-graphite composite), has been used as a support for covalent immobilization of urease. Two types of all-solid-state construction process have been assayed: thin layers of cellulose acetate (CA) were coated on the PVC ammonium-selective membranes (type 1) and blends of PVC and CA at various ratios were used as ammonium-selective membrane matrices (type 2). Urease was covalently attached to CA via aldehyde groups. These groups were created on the polysaccharide with sodium periodate to which the enzyme was immobilized through a spacer (hexamethylenediamine). The viability of both types of probe for the determination of ammonium ions was assessed after each step of the activation process. Results indicated that type 2 potentiometric probes are altered after the treatment with sodium periodate. Good results were obtained with type 1 probes. Their dynamic concentration range of response to urea was from 2 x 10(-5) to 0.01 M with a sensibility of 50 mV/decade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0956-5663(92)85022-3 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.
Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
In the last few years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the cause of a worldwide pandemic, highlighting the need for novel antiviral agents. The main protease (M) of SARS-CoV-2 was immediately identified as a crucial enzyme for viral replication and has been validated as a drug target. Here, we present the design and synthesis of peptidomimetic M covalent inhibitors characterized by quinoline-based P moieties.
View Article and Find Full Text PDFChin Med
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
Background: Cutaneous hypertrophic scar is a fibro-proliferative hard-curing disease. Recent studies have proved that antagonists of angiotensin II type 1 receptor (ATR) and agonists of type 2 receptor (ATR) were able to relieve hypertrophic scar. Therefore, establishing new methods to pursue dual-target lead compounds from Chinese herbs is in much demand for treating scar.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014. Electronic address:
Ethnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!