Effects of ketamine on electroencephalographic and autonomic arousal and segmental reflex responses in the cat.

Vet Anaesth Analg

Department of Neuroscience and University of Florida Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610-0244, USA.

Published: October 2003

Objective: To provide evidence concerning doses of ketamine that affect electroencephalographic (EEG) and autonomic signs of arousal during nociceptive stimulation.

Study Design: Prospective psychophysical test in people. Single injection or progressively increasing infusions of ketamine in cats. ANIMALS AND PEOPLE: Seven people (20-60 years old) and three cats (3-5 kg) for EEG recording and six cats for EMG recordings.

Methods: In order to define innocuous and nociceptive stimulus intensities which could be applied to cats to evaluate arousal, psychophysical evaluations of sensations elicited by compression of the skin overlying phalangeal bones of the hand were obtained from human subjects. Then, following administration of ketamine, recordings of EEG frequency and of autonomic responses (heart rate, respiratory rate and arterial blood pressure) were obtained before and during stimulation of the tails of cats at pressures identified by human observers as either innocuous or nociceptive. Observations of withdrawal reflexes of the hindlimbs following interdigital skin stimulation were interposed between recording periods. In separate sessions, stretch reflex activity was assessed during awake and anesthetic conditions by recording electromyographic activity from soleus muscles and resistive force to dorsiflexion of the tibiotarsal joint.

Results: There were no changes in either total EEG (0.5-30.0 Hz), low-frequency (0.6-7.5 Hz) or high-frequency (7.5-30.0 Hz) power produced by nociceptive stimulation for a period of 18-24 minutes following an intramuscular bolus dose of ketamine (33.0 mg kg-1), although withdrawal reflexes were present. Thereafter, nociceptive stimulation produced EEG arousal responses in the low-frequency and total power range and increased systolic blood pressure and respiration rate. In tests after intravenous infusion of ketamine (10.0-22.2 mg kg-1 hour-1), total and low-frequency EEG power and autonomic responses to nociceptive stimulation were eliminated. Organized motor responses were never elicited during IV infusion, but withdrawal reflexes were observed at each dosage. Also, stretch reflexes were shown by quantitative analysis to be retained at all doses of ketamine infusion.

Conclusions And Clinical Relevance: These results show that testing of withdrawal reflexes does not reveal the adequacy of ketamine anesthesia. Segmental stretch and withdrawal reflexes are preserved and can be investigated during infusion of ketamine at doses that eliminate arousal from brief periods of nociceptive stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1467-2995.2003.00099.xDOI Listing

Publication Analysis

Top Keywords

withdrawal reflexes
20
nociceptive stimulation
16
ketamine
8
doses ketamine
8
innocuous nociceptive
8
autonomic responses
8
blood pressure
8
infusion ketamine
8
nociceptive
7
eeg
6

Similar Publications

Background: Changan Granule (CAG) is a drug product developed from a traditional Chinese medicine (TCM) empirical prescription for diarrhea-predominant irritable bowel syndrome (IBS-D). The action mechanism and effective compounds of CAG in the treatment of IBS-D are not well understood.

Purpose: This study aimed to investigate the effectiveness, action mechanism and effective compounds of CAG for treating IBS-D.

View Article and Find Full Text PDF

Background: As the population ages, more people live longer with multimorbidity. Older people with multimorbidity face diverse needs and medical conditions, increasing the risk of adverse health outcomes, and often experience fragmented healthcare. Research has called for better ways to reach, understand and care for this group to enhance care continuity.

View Article and Find Full Text PDF

Characterization of risk factors for early ambulation in paraplegic dogs with absent pain perception undergoing decompressive surgery for thoracolumbar intervertebral disk extrusions.

Front Vet Sci

December 2024

Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.

Background: Current literature warrants surgical decompression in paraplegic dogs with absent pain perception (APP), but the rate of ambulatory dogs with APP following thoracolumbar (TL) IVDE surgery in a clinical setting remains unknown. Furthermore, the outcome of paraplegic APP French Bulldogs (FBs) is anecdotally considered poor. The aims of this study were threefold within a large population of TL-IVDE paraplegic dogs with APP undergoing decompressive surgery: (1) to characterize early spontaneous pelvic limb movement and ambulation following surgery; (2) to identify risk factors for the recovery of ambulation; and (3) to compare the outcome of FBs and Dachshunds presenting with APP.

View Article and Find Full Text PDF

Background: Fluoxetine, a serotonin reuptake inhibitor antidepressant, raises extracellular serotonin levels and promotes angiogenesis and neurogenesis. Numerous animal models have shown its beneficial effects on recovery from peripheral nerve injury.

Purpose: The primary objective of this study was to analyze the influence of fluoxetine on the sensory-motor function recovery of the sciatic nerve in Wistar rats after axonotmesis.

View Article and Find Full Text PDF

Introduction: Use of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is still in the focus of research, in which pigs are commonly involved. During VA-ECMO, cardiovascular parameters are artificially manipulated and therefore not reliable indicators of nociception. Nociceptive withdrawal reflex (NWR) thresholds can be a suitable alternative in such a context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!