Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite.

Biochemistry

Laboratorio de Enzimología, Facultad de Ciencias and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

Published: August 2003

Human serum albumin (HSA), the most abundant protein in plasma, has been proposed to have an antioxidant role. The main feature responsible for this property is its only thiol, Cys34, which comprises approximately 80% of the total free thiols in plasma and reacts preferentially with reactive oxygen and nitrogen species. Herein, we show that the thiol in HSA reacted with hydrogen peroxide with a second-order rate constant of 2.26 M(-1) s(-1) at pH 7.4 and 37 degrees C and a 1:1 stoichiometry. The formation of intermolecular disulfide dimers was not observed, suggesting that the thiol was being oxidized beyond the disulfide. With the reagent 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl), we were able to detect the formation of sulfenic acid (HSA-SOH) from the UV-vis spectra of its adduct. The formation of sulfenic acid in Cys34 was confirmed by mass spectrometry using 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Sulfenic acid was also formed from exposure of HSA to peroxynitrite, the product of the reaction between nitric oxide and superoxide radicals, in the absence or in the presence of carbon dioxide. The latter suggests that sulfenic acid can also be formed through free radical pathways since following reaction with carbon dioxide, peroxynitrite yields carbonate radical anion and nitrogen dioxide. Sulfenic acid in HSA was remarkably stable, with approximately 15% decaying after 2 h at 37 degrees C under aerobic conditions. The formation of glutathione disulfide and mixed HSA-glutathione disulfide was determined upon reaction of hydrogen peroxide-treated HSA with glutathione. Thus, HSA-SOH is proposed to serve as an intermediate in the formation of low molecular weight disulfides, which are the predominant plasma form of low molecular weight thiols, and in the formation of mixed HSA disulfides, which are present in approximately 25% of circulating HSA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi027434mDOI Listing

Publication Analysis

Top Keywords

sulfenic acid
24
human serum
8
serum albumin
8
hydrogen peroxide
8
formation sulfenic
8
acid formed
8
carbon dioxide
8
low molecular
8
molecular weight
8
formation
7

Similar Publications

Molecular Mechanism of Unexpected Metal-Independent Hydroxyl Radical Production by Mercaptotriazole and HO.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China.

It is well known that hydroxyl radical (OH) can be largely produced either through the classic iron-mediated inorganic-Fenton system or our recently discovered haloquinones/HO organic-Fenton-like system, but rarely produced via thiol compounds. Here, unexpectedly, we found that OH can be unequivocally generated by incubation of HO and mercaptotriazole (MTZ), a typical heterocyclic thiol which has been used as an environmentally friendly corrosion inhibitor for mild steel. By the complementary applications of HPLC-MS and oxygen-18 isotope-labeling method, MTZ-derived sulfenic (MTZ-SOH) and sulfinic acids were detected and identified as transient intermediates, and sulfonic acid as final products.

View Article and Find Full Text PDF

Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut.

Signal Transduct Target Ther

January 2025

National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), S-nitrosylation (SNO), and S-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys.

View Article and Find Full Text PDF

In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signaling by oxidising crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM).

View Article and Find Full Text PDF

Oxidation of CaMKIIα cysteines inhibits autonomous activation induced by phosphorylation.

Arch Biochem Biophys

February 2025

Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Maryland, USA. Electronic address:

Ca/calmodulin-dependent protein kinase II α (CaMKIIα) "autonomous" activation induced by Thr286 phosphorylation has a crucial role in synaptic plasticity. Previous studies showed that in Alzheimer's disease brain, CaMKIIα autophosphorylation at Thr286 is reduced while the level of cysteine-oxidized CAMKIIα is elevated. We performed tryptic mapping of the oxidized CaMKIIα and discovered the formation of a disulfide between the N-terminal Cys6 and the regulatory domain Cys280.

View Article and Find Full Text PDF

A highly efficient method has been developed for synthesizing 4-dienyl dihydropyridines through the nucleophilic dearomatization of activated pyridines using vinyl sulfoxonium ylides. This reaction follows the sequence involving ylide addition to activated pyridine, [2,3]-sigmatropic rearrangement, and subsequent sulfenic acid elimination. The resulting 4-dienyl dihydropyridines are then used in the synthesis of highly substituted -heterocyles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!