A new polydentate bridging ligand, NH(4)C(5)N=NC(6)H(4)N(H)C(5)H(4)N (HL(2)), is synthesized by the cobalt-mediated phenyl ring amination of coordinated NH(4)C(5)N=NC(6)H(5). The green cobalt complex intermediate [Co(L(2))(2)](ClO(4)), [1](ClO(4)), and the free ligand HL(2) were isolated and characterized. The X-ray structure of [H(2)L(2)](ClO(4)) is reported. The ligand, upon deprotonation, behaves as a bridging ligand. It reacts with NiCl(2).6H(2)O and Na(2)[PdCl(4)] to produce dimetallic complexes, [Ni(2)Cl(2)(L(2))(2)], 2, and [Pd(2)(L(2))(2)](ClO(4))(2), [3](ClO(4))(2), respectively. X-ray structures of these two dimetallic complexes are reported. The structure of the dinickel complex, in particular, is unique. In this complex, the two deprotonated secondary amine nitrogens of the two [L(2)](-) ligands bind to two nickel centers simultaneously forming a planar Ni(2)N(2) arrangement. The complex [3](ClO(4))(2) is diamagnetic while the complex 2 is paramagnetic. The results of magnetic measurements on the dinickel complex in the temperature range 1.8-300 K are reported. The system can be described as a single spin S = 2 in the low-temperature range T << J/k whereas at high temperatures, T >> J/k, it behaves as two independent spins S = 1.The reaction of [L(2)](-) with K(2)[PtCl(4)], however, yielded a monometallic platinum complex, [PtCl(3)(L(2))], 5, where the pyridyl nitrogen of the aminopyridyl function remained unused. The X-ray structure of the complex 4a is reported. The bond lengths along the ligand backbones in all the complexes indicate extensive pi-delocalization. Spectral data of the complexes are reported and compared.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic034313hDOI Listing

Publication Analysis

Top Keywords

bridging ligand
8
complex
8
x-ray structure
8
dimetallic complexes
8
complexes reported
8
dinickel complex
8
ligand
7
reported
5
design synthesis
4
synthesis binucleating
4

Similar Publications

Dissecting the Binding Affinity of Anti-SARS-CoV-2 Compounds to Human Transmembrane Protease, Serine 2: A Computational Study.

Int J Mol Sci

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China.

The human transmembrane protease, serine 2 (TMPRSS2), essential for SARS-CoV-2 entry, is a key antiviral target. Here, we computationally profiled the TMPRSS2-binding affinities of 15 antiviral compounds. Molecular dynamics (MD) simulations for the docked complexes revealed that three compounds exited the substrate-binding cavity (SBC), suggesting noncompetitive inhibition.

View Article and Find Full Text PDF

Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior.

View Article and Find Full Text PDF

Lewis Base-Enhanced C-H Bond Functionalization Mediated by a Diiron Imido Complex.

Inorg Chem

January 2025

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

Herein, we investigate the effects of ligand design on the nuclearity and reactivity of metal-ligand multiply bonded (MLMB) complexes to access an exclusively bimetallic reaction pathway for C-H bond functionalization. To this end, the diiron alkoxide [Fe(Dbf)] () was treated with 3,5-bis(trifluoromethyl)phenyl azide to access the diiron imido complex [Fe(Dbf)(μ-NCHF)] () that promotes hydrogen atom abstraction (HAA) from a variety of C-H and O-H bond containing substrates. A diiron bis(amide) complex [Fe(Dbf)(μ-NHCHF)(NHCHF)] () was generated, prompting the isolation of the analogous bridging amide terminal alkoxide [Fe(Dbf)(μ-NHCHF)(OCH)] () and the asymmetric pyridine-bound diiron imido [Fe(Dbf)(μ-NCHF)(NCH)] ().

View Article and Find Full Text PDF

Detection of reproducible liver cancer specific ligand-receptor signaling in blood.

Front Bioinform

January 2025

RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany.

Cell-cell communication mediated by ligand-receptor interactions (LRI) is critical to coordinating diverse biological processes in homeostasis and disease. Lately, our understanding of these processes has greatly expanded through the inference of cellular communication, utilizing RNA extracted from bulk tissue or individual cells. Considering the challenge of obtaining tissue biopsies for these approaches, we considered the potential of studying cell-free RNA obtained from blood.

View Article and Find Full Text PDF

Lutetium-177 labeled iPD-L1 as a novel immunomodulator for cancer-targeted radiotherapy.

EJNMMI Radiopharm Chem

January 2025

Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Mexico.

Background: Cancer immunotherapy is a relatively new approach to cancer treatment. Peptides that target specific pathways and cells involved in immunomodulation can potentially improve the efficacy of cancer therapy. Recently, we reported iPD-L1 as a novel inhibitor peptide that specifically targets the cancer cell ligand PD-L1 (programmed death ligand 1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!