Glutamate is transported into synaptic vesicles by vesicular glutamate transporter (VGLUT) proteins. Three different VGLUTs, VGLUT1, VGLUT2, and VGLUT3, have recently been characterized, and they are considered to represent the most specific marker so far for neurons using glutamate as transmitter. We analyzed the cellular localization of VGLUT1-3 in the rat spinal cord and dorsal root ganglia (DRGs) in control rats and after dorsal rhizotomy. Using in situ hybridization, VGLUT1 mRNA containing neurons were shown in the dorsomedial part of the intermediate zone, whereas VGLUT2 mRNA-expressing neurons were present in the entire intermediate zone, both populations most likely representing interneurons. VGLUT3 mRNA could not be detected in the spinal cord. In the ventral horn, a dense plexus of VGLUT1-immunoreactive (ir) nerve terminals was present, with large varicosities abutting on presumed motoneurons. In the dorsal horn a similarly dense plexus was seen, except in laminae I and II. A very dense plexus of VGLUT2-ir fibers was distributed in the entire gray matter of the spinal cord, with many fibers lying close to presumed motoneurons. Few VGLUT3-ir fibers were distributed in the white and gray matter, including lamina IX. However, a dense VGLUT3-ir plexus was seen in the sympathetic intermedio-lateral column (IML). Multiple-labeling immunohistochemistry revealed that the VGLUT1-, VGLUT2-, and VAChT-containing varicosities in lamina IX all represent separate entities. There was no colocalization of VGLUT3 with VAChT or 5-HT in varicose fibers of the ventral horn, but some VGLUT3-ir fibers in the IML were 5-HT-positive. Lesioning of the dorsal roots resulted in an almost complete disappearance of VGLUT1-ir fibers around motoneurons and a less pronounced decrease in the remaining gray matter, whereas the density of VGLUT2- and VAChT-ir fibers appeared unaltered after lesion. Many VGLUT1-ir neurons were observed in DRGs; they were almost all large and did not colocalize calcitonin gene-related peptide (CGRP), and there was no overlap between these markers in fibers in the superficial dorsal horn. VGLUT2 was, at most, seen in a few DRG neurons. Taken together, these results suggest that the VGLUTs mRNAs are present in distinct subsets of neuronal populations at the spinal level. VGLUT1 is mainly present in primary afferents from large, CGRP-negative DRG neurons, VGLUT2 has mainly a local origin, and VGLUT3 fibers probably have a supraspinal origin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/syn.10249 | DOI Listing |
Sci Rep
December 2024
Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.
View Article and Find Full Text PDFNat Commun
December 2024
Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
Peripheral neuropathy (PN), the most common complication of diabetes, leads to sensory loss and associated health issues as pain and increased fall risk. However, present treatments do not counteract sensory loss, but only partially manage its consequences. Electrical neural stimulation holds promise to restore sensations, but its efficacy and benefits in PN damaged nerves are yet unknown.
View Article and Find Full Text PDFNat Commun
December 2024
Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry, McGill University, Montreal, QC, Canada.
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.
View Article and Find Full Text PDFNat Commun
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!