Herpes simplex virus type 1/adeno-associated virus (HSV/AAV) rep(+) hybrid amplicon vectors containing AAV inverted terminal repeats (ITRs) and rep gene sequences can mediate site-specific integration into the human genome. In this study, we have generated and characterized the first transgenic mice that bear the full-length (8.2 kb) human AAVS1 locus. Immortalized mouse embryonic fibroblasts from this mouse line were transduced with the rep(+), rep(-) (containing only ITRs flanking the transgene) hybrid amplicon vectors, and the standard amplicon vector to determine stable integration frequency and the site of integration. Transduction of transgenic fibroblasts resulted in a 10-fold higher stable integration frequency with rep(+) hybrid amplicon vector than with rep(-) or standard amplicon vectors. Southern blot analysis of genomic DNA from transgenic cells stably transduced with the rep(+) hybrid amplicon vector revealed site-specific integration of transgenes at the AAVS1 locus in 50% of clones. Some site-specific and random integration events were limited to the ITR-flanked transgene cassette. In contrast, transduction of transgenic mouse cells with the rep(-) or standard amplicon vectors resulted in random integrations of the entire rep(-) hybrid amplicon or amplicon DNA that were incorporated into the host genome as a concatenate of various sizes. These results demonstrate for the first time that the genome of transgenic mice bearing the human AAVS1 locus serves as a platform for site-specific integration of AAV ITR-flanked transgene cassettes within the hybrid amplicon vector in the presence of Rep.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.gt.3302061DOI Listing

Publication Analysis

Top Keywords

hybrid amplicon
28
amplicon vector
20
aavs1 locus
16
rep+ hybrid
16
amplicon vectors
16
human aavs1
12
site-specific integration
12
standard amplicon
12
amplicon
11
integration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!