Background: Gene expression profiling has the potential to produce new insights into complex biologic systems. To test the value of complement DNA arrays in identifying pathways involved in organ transplant rejection, we examined the gene expression profiles of rat heart allografts from recipients treated with or without immunosuppression to prevent acute allograft rejection.

Methods: Heterotopic heart transplantation was performed using ACI or Lewis donors and Lewis recipients. Recipients were treated with tacrolimus (Tac) or cyclosporine (CsA) at the equivalent effective doses, and graft hearts were harvested on days 3, 5, and 7. A commercial microarray was used to measure gene expression levels of 588 genes in day 5 grafts. Selected genes were analyzed by reverse transcriptase-polymerase chain reaction.

Results: The expression levels of 118 genes were perturbed in the untreated allograft in comparison with the isograft control, of which 77 genes were categorized as candidate genes for Tac- or CsA-mediated immunosuppression or both, and 41 as genes associated with other pathways. Among the 77 candidate genes, 55 genes shared the same response to suppression by both drugs, including inducible nitric oxide synthase, interferon-gamma, and interferon regulatory factor 1. Drug-specific effects were observed in 22 genes: Fourteen genes were exclusively reversed by Tac and eight by CsA.

Conclusions: Gene expression profiling reveals a large variety of genes affected during acute rejection, indicating that multiple metabolic pathways, including immune and nonimmune responses, are involved in the local graft rejection events. The differences and similarities of the gene expression profiles relative to the two immunosuppressants may provide more detailed therapeutic approaches for optimal immunosuppression.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.TP.0000081398.65568.1BDOI Listing

Publication Analysis

Top Keywords

gene expression
24
expression profiles
12
genes
11
rat heart
8
heart transplantation
8
expression profiling
8
recipients treated
8
expression levels
8
candidate genes
8
expression
7

Similar Publications

Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.

View Article and Find Full Text PDF

Purpose: After failing primary and secondary hormonal therapy, castration-resistant and neuroendocrine prostate cancer metastatic to the bone is invariably lethal, although treatment with docetaxel and carboplatin can modestly improve survival. Therefore, agents targeting biologically relevant pathways in PCa and potentially synergizing with docetaxel and carboplatin in inhibiting bone metastasis growth are urgently needed.

Experimental Design: Phosphorylated (activated) AXL expression in human prostate cancer bone metastases was assessed by immunohistochemical staining.

View Article and Find Full Text PDF

Spatial transcriptomics enhances our understanding of cellular organization by mapping gene expression data to precise tissue locations. Here, we present a protocol for using weighted ensemble method for spatial transcriptomics (WEST), which uses ensemble techniques to boost the robustness and accuracy of existing algorithms. We describe steps for preprocessing data, obtaining embeddings from individual algorithms, and ensemble integrating all embeddings as a similarity matrix.

View Article and Find Full Text PDF
Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!