The transcription factor Sox1 is the earliest and most specific known marker for mammalian neural progenitors. During fetal development, Sox1 is expressed by proliferating progenitor cells throughout the central nervous system and in no tissue but the lens. We generated a reporter mouse line in which egfp is inserted into the Sox1 locus. Sox1GFP animals faithfully recapitulate the expression of the endogenous gene. We have used the GFP reporter to purify neuroepithelial cells by fluorescence-activated cell sorting from embryonic day 10.5 embryos. RNAs prepared from Sox1GFP+ and Sox1GFP- embryo cells were then used to perform a pilot screen of subtracted cDNAs prepared from differentiating embryonic stem cells and arrayed on a glass chip. Fifteen unique differentially expressed genes were identified, all previously associated with fetal or adult neural tissue. Whole mount in situ hybridization against two genes of previously unknown embryonic expression, Lrrn1 and Musashi2, confirmed the selectivity of this screen for early neuroectodermal markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC304095PMC
http://dx.doi.org/10.1073/pnas.1734197100DOI Listing

Publication Analysis

Top Keywords

mammalian neural
8
fluorescence-activated cell
8
screening mammalian
4
neural
4
neural genes
4
genes fluorescence-activated
4
cell sorter
4
sorter purification
4
purification neural
4
neural precursors
4

Similar Publications

Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits.

View Article and Find Full Text PDF

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.

View Article and Find Full Text PDF

A common heavy metal in many facets of daily life is aluminum (AlCl3), which can be found in food, toothpaste, cosmetics, food additives, and numerous pharmaceutical items. The hippocampus, liver, and kidneys have the highest concentrations of this powerful neurotoxin, which also accumulates over time and contributes to the development of a number of cognitive disorders. Long-term overconsumption of AlCl3 results in hepatic and renal toxicity as well as neuronal inflammation.

View Article and Find Full Text PDF

Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!