Bone cells respond to mechanical stimulation by gene expression. The molecular events involved in the translation of mechanical stimulation into cell proliferation and bone formation are not yet well understood. We looked for the expression of early-response genes of the AP-1 transcription factor complex in an in vivo bone regeneration system subjected to mechanical forces because these genes were found to be related to mechanotransduction and important for bone development. Sheep maxillary bone was distracted daily for 15 days. c-Jun and c-Fos were evaluated by Northern blotting analysis and immunohistochemistry in biopsy specimens removed at 8 and 15 days and were compared with post-osteotomy but not distracted repair tissue. Elevated levels of c-Jun and c-Fos mRNA were found after 8 days of distraction. Likewise, mesenchyme-like and fibroblast-like cells composing the 8-day distracted regeneration tissue showed increases in the intensity of immunostaining compared to cells in the corresponding non-distracted fracture repair tissue. After 15 days of distraction, when bone trabeculae start to form distally and proximally in the distracted regeneration tissue, mostly preosteoblasts and osteoblasts retained c-Fos and c-Jun immunoreactivity, similar to bone-associated cells in control non-distracted fracture repair tissue. We propose that the elevated expression of c-Jun and c-Fos is related to mechanical stimulation in this in vivo bone regeneration system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/002215540305100906 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!