IncI1 plasmid R64 encodes a type IV pilus called a thin pilus, which includes PilV adhesins. Seven different sequences for the C-terminal segments of PilV adhesins can be produced by shufflon DNA rearrangement. The expression of the seven PilV adhesins determines the recipient specificity in liquid matings of plasmid R64. Salmonella enterica serovar Typhimurium LT2 was recognized by the PilVA' and PilVB' adhesins, while Escherichia coli K-12 was recognized by the PilVA', PilVC, and PilVC' adhesins. Lipopolysaccharide (LPS) on the surfaces of recipient cells was previously shown to be the specific receptor for the seven PilV adhesins. To identify the specific receptor structures of LPS for various PilV adhesins, R64 liquid matings were carried out with recipient cells consisting of various S. enterica serovar Typhimurium LT2 and E. coli K-12 waa mutants and their derivatives carrying various waa genes of different origins. From the mating experiments, including inhibition experiments, we propose that the GlcNAc(alpha1-2)Glc and Glc(alpha1-2)Gal structures of the LPS core of S. enterica serovar Typhimurium LT2 function as receptors for the PilVB' and PilVC' adhesins, respectively, while the PilVC' receptor in the wild-type LT2 LPS core may be masked. We further propose that the GlcNAc(beta1-7)Hep and Glc(alpha1-2)Glc structures of the LPS core of E. coli K-12 function as receptors for the PilVC and PilVC' adhesins, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC181018 | PMC |
http://dx.doi.org/10.1128/JB.185.17.5192-5199.2003 | DOI Listing |
Commun Biol
November 2023
Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
Sheng Wu Gong Cheng Xue Bao
January 2023
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
Antimicrobial resistance has become a major public health issue of global concern. Conjugation is an important way for fast spreading drug-resistant plasmids, during which the type Ⅳ pili plays an important role. Type Ⅳ pili can adhere on the surfaces of host cell and other medium, facilitating formation of bacterial biofilms, bacterial aggregations and microcolonies, and is also a critical factor in liquid conjugation.
View Article and Find Full Text PDFMicrobiol Spectr
April 2022
Département de biologie, Faculté des sciences, Université de Sherbrookegrid.86715.3d, Sherbrooke, Quebec, Canada.
Type IV pili (T4P) are common bacterial surface appendages involved in different biological processes such as adherence, motility, competence, pathogenesis, and conjugation. In this work, we describe the T4P of TP114, an IncI2 enterobacterial conjugative plasmid recently shown to disseminate at high rates in the mouse intestinal tract. This pilus is composed of the major PilS and minor PilV pilins that are both important for conjugation in broth and in the gut microbiota but not on a solid support.
View Article and Find Full Text PDFmBio
February 2022
Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.
The opportunistic pathogen Pseudomonas aeruginosa relies upon type IV pili (Tfp) for host colonization and virulence. Tfp are retractile surface appendages that promote adherence to host tissue and mediate twitching motility, a form of surface-associated translocation. Tfp are composed of a major structural pilin protein (PilA), several less abundant, fiber-associated pilin-like proteins (FimU, PilV, PilW, PilX, and PilE), and a pilus-associated tip adhesin and surface sensor (PilY1).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Faculté de Médecine, Université de Paris, Paris 75006, France;
utilizes type IV pili (T4P) to adhere to and colonize host endothelial cells, a process at the heart of meningococcal invasive diseases leading to meningitis and sepsis. T4P are polymers of an antigenically variable major pilin building block, PilE, plus several core minor pilins that initiate pilus assembly and are thought to be located at the pilus tip. Adhesion of to human endothelial cells requires both PilE and a conserved noncore minor pilin PilV, but the localization of PilV and its precise role in this process remains to be clarified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!