Interference of outer membrane protein PalA with protective immunity against Actinobacillus pleuropneumoniae infections in vaccinated pigs.

Vaccine

Intervet International, P.O. Box 31, NL-5830 AA, Boxmeer, The Netherlands.

Published: September 2003

The role of antibodies to the outer membrane protein PalA of Actinobacillus pleuropneumoniae in protective immunity was studied in pigs vaccinated with purified PalA alone and PalA in combination with toxoids of the RTX toxins ApxI and ApxII using an established challenge model with the virulent serotype 1 of A. pleuropneumoniae. Pigs that developed antibody titers against PalA after immunization were more significantly affected by challenge with A. pleuropneumoniae serotype 1. Following challenge, pigs that were immunized with PalA showed more severe respiratory symptoms, had a higher mortality rate and died faster. They also displayed much more severe lung lesions after necropsy than animals not immunized with PalA. Pigs that were immunized with toxoids of the two cytotoxins ApxI and ApxII were protected against challenge with A. pleuropneumoniae. In contrast, the protective efficacy of the ApxI and ApxII vaccine was completely lost when it was supplemented with PalA. Hence, antibodies induced against the outer membrane protein PalA of A. pleuropneumoniae aggravated the consequences of infection and counteracted the protective effect of anti-ApxI and anti-ApxII antibodies. Due to the high similarity between protein analogues of PalA from various bacteria of the Pasteurellaceae family such as P6 of Haemophilus influenzae or 16kDa Omp of Pasteurella multocida, this deleterious effect of PalA in vaccination should be taken into consideration in the development of vaccines against infections with other Pasteurellaceae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0264-410x(03)00410-9DOI Listing

Publication Analysis

Top Keywords

outer membrane
12
membrane protein
12
protein pala
12
apxi apxii
12
pala
11
protective immunity
8
actinobacillus pleuropneumoniae
8
challenge pleuropneumoniae
8
pigs immunized
8
immunized pala
8

Similar Publications

Opportunities and challenges of bacterial extracellular vesicles in regenerative medicine.

J Nanobiotechnology

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.

Extracellular vesicles (EVs) are membrane-bound vesicles that are shed or secreted from the cell membrane and enveloped by a lipid bilayer. They possess stability, low immunogenicity, and non-cytotoxicity, exhibiting extensive prospects in regenerative medicine (RM). However, natural EVs pose challenges, such as insufficient targeting capabilities, potential biosafety concerns, and limited acquisition pathways.

View Article and Find Full Text PDF

Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.

View Article and Find Full Text PDF

Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Michigan State University, Grand Rapids, MI, USA.

Background: The pathological correlate most tightly associated with cognitive decline in AD is synapse loss. The presence of pathological tau significantly correlates with synaptotoxicity and cognitive decline in AD, yet it is currently unclear how pathological tau causes synapse loss. Within the brain, complement component C1q coats the outer membrane of weak or damaged synapses, resulting in the phagocytic removal of tagged synapses by microglia.

View Article and Find Full Text PDF

Structural and functional analysis of the lipoprotein chaperone LolA.

Front Microbiol

December 2024

Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.

Lipoproteins are crucial for maintaining the structural integrity of bacterial membranes. In Gram-negative bacteria, the localization of lipoprotein (Lol) system facilitates the transport of these proteins from the inner membrane to the outer membrane. In , an ε-proteobacterium, lipoprotein transport differs significantly from the canonical and well-studied system in , particularly due to the absence of LolB and the use of a LolF homodimer instead of the LolCE heterodimer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!