The order Nidovirales, which includes the arteriviruses and coronaviruses, incorporate a cytoplasmic replication scheme; however, the nucleocapsid (N) protein of several members of this group localizes to the nucleolus suggesting that viral proteins influence nuclear processes during replication. The relatively small, 123 amino acid, N protein of porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, presents an ideal model system for investigating the properties and mechanism of N protein nucleolar localization. The PRRSV N protein is found in both cytoplasmic and nucleolar compartments during infection and after transfection of gene constructs that express N-enhanced green fluorescent protein (EGFP) fusion proteins. Experiments using oligopeptides, truncated polypeptides and amino acid-substituted proteins have identified several domains within PRRSV N protein that participate in nucleo-cytoplasmic shuttling, including a cryptic nuclear localization signal (NLS) called NLS-1, a functional NLS (NLS-2), a nucleolar localization sequence (NoLS), as well as a possible nuclear export signal (NES). The purpose of this paper is to review our current understanding of PRRSV N protein shuttling and propose a shuttling scheme regulated by RNA binding and post-translational modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127199PMC
http://dx.doi.org/10.1016/s0168-1702(03)00161-8DOI Listing

Publication Analysis

Top Keywords

nucleolar localization
12
prrsv protein
12
protein
8
nucleocapsid protein
8
nuclear export
8
export signal
8
prrsv
5
nuclear
5
nucleolar-cytoplasmic shuttling
4
shuttling prrsv
4

Similar Publications

Moderating the pool of active ribosomal subunits is critical for maintaining global translation rates. A factor crucial for modulating the 60S ribosomal subunit is eukaryotic translation initiation factor-6 (eIF6). Release of eIF6 from the 60S subunit is essential to permit 60S interactions with the 40S subunit.

View Article and Find Full Text PDF

DNA Ligase I Circularises Potato Spindle Tuber Viroid RNA in a Biomolecular Condensate.

Mol Plant Pathol

December 2024

Plant Molecular and Cell Biology Program, University of Florida, Gainesville, Florida, USA.

Viroids are single-stranded circular noncoding RNAs that mainly infect crops. Upon infection, nuclear-replicating viroids engage host DNA-dependent RNA polymerase II for RNA-templated transcription, which is facilitated by a host protein TFIIIA-7ZF. The sense-strand and minus-strand RNA intermediates are differentially localised to the nucleolus and nucleoplasm regions, respectively.

View Article and Find Full Text PDF

Advances in the structure and function of the nucleolar protein fibrillarin.

Front Cell Dev Biol

November 2024

Department of Hepatobiliary and pancreatic, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.

Fibrillarin (FBL) is a highly conserved and well-researched nucleolar protein found in eukaryotes. Its presence was first identified in 1985 through protein immunoblotting analyses using antisera from patients with autoimmune scleroderma. Through immunoelectron microscopy, FBL was shown to be localized in the dense fibrillar component of the nucleolus, leading to the term "fibrillarin".

View Article and Find Full Text PDF

Ribosome biogenesis is vital for sustaining stem cell properties, yet its regulatory mechanisms are obscure. Herein, we show unique properties of zebrafish mutants in which spermatogonial stem cells (SSCs) do not differentiate or upregulate rRNAs. Meioc colocalized with Piwil1 in perinuclear germ granules, but Meioc depletion resulted in Piwil1 accumulation in nucleoli.

View Article and Find Full Text PDF

Ribosome biogenesis plays a pivotal role in maintaining stem cell homeostasis, yet the precise regulatory mechanisms governing this process in mouse embryonic stem cells (mESCs) remain largely unknown. In this investigation, we ascertain that DEAD-box RNA helicase 10 (DDX10) is indispensable for upholding cellular homeostasis and the viability of mESCs. Positioned predominantly at the nucleolar dense fibrillar component (DFC) and granular component (GC), DDX10 predominantly binds to 45S ribosomal RNA (rRNA) and orchestrates ribosome biogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!