The Rhesus (Rh) glycoproteins, originally described in human blood cells, are mostly recognized for their immunogenic characteristics and importance in pregnancy. The Rh proteins in the red blood cell are expressed as an "Rh complex" made up of one D-subunit, one CE-subunit and two Rh-associated glycoprotein (RhAG) subunits. In addition to its antigenic property, the Rh complex is thought to contribute to membrane stability and structure of red blood cells. The exact function is yet to be determined. Recently, two non-erythroid Rh glycoproteins were cloned from mice (Rhcg and Rhbg) and humans (RhCG and RhBG). RhCG is expressed at the membrane surface alone with no apparent need for heteromeric interaction with other glycoproteins. It is more similar to RhAG than to Rh CE/D, occurs late in development and is expressed abundantly and broadly in kidney and testis. In the kidney RhCG is localized to the apical cell membrane of the collecting duct. Rhbg and its human analog (RhBG) are expressed mainly in liver, skin and the kidney tubules. In the kidney collecting duct, Rhbg is localized to the basolateral membrane. Based on structural similarities to the methylammonium and ammonium permease/ammonium (MEP/Amt) transporters in yeast and their sequence homology, these proteins probably function as NH(4)(+) transporters. An initial study has indicated that RhAG or RhCG promote efflux of NH(4)(+), whereas another study has suggested that RhAG functions as an NH(4)(+)-H(+) exchanger. Evidence for such a function is still circumstantial and data indicating that Rh proteins function as NH(4)(+) transporters are indirect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-003-1142-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!