340,000-year centennial-scale marine record of Southern Hemisphere climatic oscillation.

Science

School of Earth, Ocean and Planetary Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK.

Published: August 2003

In order to investigate rapid climatic changes at mid-southern latitudes, we have developed centennial-scale paleoceanographic records from the southwest Pacific that enable detailed comparison with Antarctic ice core records. These records suggest close coupling of mid-southern latitudes with Antarctic climate during deglacial and interglacial periods. Glacial sections display higher variability than is seen in Antarctic ice cores, which implies climatic decoupling between mid- and high southern latitudes due to enhanced circum-Antarctic circulation. Structural and temporal similarity with the Greenland ice core record is evident in glacial sections and suggests a degree of interhemispheric synchroneity not predicted from bipolar ice core correlations.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1084451DOI Listing

Publication Analysis

Top Keywords

ice core
12
mid-southern latitudes
8
antarctic ice
8
glacial sections
8
340000-year centennial-scale
4
centennial-scale marine
4
marine record
4
record southern
4
southern hemisphere
4
hemisphere climatic
4

Similar Publications

Glaciers serve as natural archives for reconstructing past changes of atmospheric aerosol concentration and composition. While most ice-core studies have focused on inorganic species, organic compounds, which can constitute up to 90% of the submicrometer aerosol mass, have been largely overlooked. To our knowledge, this study presents the first nontarget screening record of secondary organic aerosol species preserved in a Belukha ice core (Siberia, Russian Federation), ranging from the pre-industrial to the industrial period (1800-1980 CE).

View Article and Find Full Text PDF

Cryopreservation of brain cell structure: a review.

Free Neuropathol

January 2024

Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Cryopreservation, the preservation of tissues at subzero temperatures, is a mainstay of brain banking that allows for the storage of brain tissue without the use of chemical fixatives. This is particularly important for molecular studies that are incompatible with tissue fixation. However, brain tissue is vulnerable to various forms of damage during the cryopreservation process, in particular due to the phase transition of water from a liquid to a solid state with the formation of ice crystals, which can disrupt cellular morphology.

View Article and Find Full Text PDF

The neuropeptide phoenixin (PNX) may be involved in regulating the hypothalamic-pituitary-gonadal (HPG) axis and inflammatory responses. This study aims to investigate the role of PNX in the regulation of HPG axis function in ice hockey players and its impact on body composition. This cross-sectional study included 65 male ice hockey players aged 18-22, divided into untrained, non-elite athlete, and elite athlete groups.

View Article and Find Full Text PDF

Unlabelled: Remote polar regions offer unique opportunities and significant challenges for antimicrobial resistance research in a near-pristine environment. While core microbiology techniques continue to have an important role in supporting environmental research, the severe cold climate presents considerable challenges to laboratory research. We explore adaptations required for core bacteriology investigations in polar regions on an unsupported remote expedition c.

View Article and Find Full Text PDF

To assess the impact of ongoing, historically unprecedented Arctic ice melting, precisely synchronized chronologies are indispensable for past analogs of abrupt climate change. Around 12,900 years before present (B.P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!