The diagnosis of malignant melanoma remains one of the most difficult to render in surgical pathology, partially because of its extreme histologic variability. Limits in the sensitivity and/or specificity of the currently available melanocytic markers such as anti-S100, HMB45, and anti-MelanA further complicate this problem. Previous work has demonstrated that the B-cell proliferation/differentiation marker MUM1/IRF4 is detected in malignant melanoma and hematolymphoid malignancies, but not in any other neoplasm tested (including colonic, lung, breast, and ovarian carcinomas). In the current study, we have examined MUM1 protein expression in 61 melanocytic lesions and compared the diagnostic usefulness of this marker with that of anti-S100, HMB45, and anti-MelanA. The results indicate that MUM1 is positive in 33/36 (92%) cases of melanoma (21/22 [95%] conventional primary melanomas and 12/14 [86%] metastatic melanomas). In comparison, positivity was seen with anti-S100 in 36/36 cases (100%, 22 primary and 14 metastatic), HMB45 in 28 cases (78%, 17 primary and 11 metastatic), and anti-MelanA in 27 cases (75%, 19 primary and 8 metastatic). Although negative in schwannomas, neurofibromas, and malignant peripheral nerve sheath tumors, MUM1 is detected in only one in eight cases of spindle cell and desmoplastic melanomas. With the exception of desmoplastic and spindle cell melanomas, MUM1 appears to be a sensitive and specific immunohistochemical stain for melanocytic lesions and may prove to be a useful addition to the current panel of melanoma markers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.MP.0000081726.49886.CF | DOI Listing |
Arch Dermatol Res
January 2025
Dermatology and Venereology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
Both the surgical non-cultured melanocyte-keratinocyte transplant procedure (MKTP) and intradermal injection of 5-Fluorouracil (5-FU) are effective in the treatment of vitiligo. Intrablisters injection of MKTP was done in one study with better results than MKTP application after ablative CO2 laser of the reciepient area. However, intrablister injection of 5-FU was not done before.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, First Affiliated Hospital of Zhengzhou University, No.1 Longhu Outer Ring Road, Jinshui District, Zhengzhou, 450052, Henan, China.
Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.
View Article and Find Full Text PDFNat Commun
January 2025
Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Accurate melanoma diagnosis is crucial for patient outcomes and reliability of AI diagnostic tools. We assess interrater variability among eight expert pathologists reviewing histopathological images and clinical metadata of 792 melanoma-suspicious lesions prospectively collected at eight German hospitals. Moreover, we provide access to the largest panel-validated dataset featuring dermoscopic and histopathological images with metadata.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.
Vitiligo is an autoimmune disease that has been recognized, stigmatized, and treated for millennia. Recent translational research has revealed key mechanisms of disease, including cellular stress, innate immune activation, T cell-mediated elimination of melanocytes from the skin resulting in clinically apparent white spots, as well as stem cell regeneration that reverses established lesions. Many of these pathways have been targeted therapeutically, leading to the first FDA-approved medication to reverse the disease, with many more in clinical trials.
View Article and Find Full Text PDFCureus
January 2025
College of Dentistry, King Saud University, Riyadh, SAU.
Oral melanocytic nevi (OMN) are rare benign tumors originating from melanocytes with an unclear pathogenesis. The current theory suggests that OMN originate from dormant dendritic melanocytes that become enclosed in the dermis during the embryonic migration of melanoblasts - the precursors of melanocytes - from the neural crest to the epidermis. OMN can be congenital or acquired, with acquired nevi being more common.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!