The phylogenetic relationship of possible progenitors of the cultivated peanut.

J Hered

Department of Genetics and Biochemistry, Clemson University, 100 Jordan Hall, Clemson, SC 29634-0324, USA.

Published: April 2004

The cultivated peanut (Arachis hypogaea L.) is an allotetraploid composed of A and B genomes. The phylogenetic relationship among the cultivated peanut, wild diploid, and tetraploid species in the section Arachis was studied based on sequence comparison of stearoyl-ACP desaturase and oleoyl-PC desaturase. The topology of the trees for both fatty acid desaturases displayed two clusters; one cluster with A genome diploid species and the other with B genome diploid species. The two homeologous genes obtained for each of the two fatty acid desaturases from the tetraploid species A. hypogaea and A. monticola were separated into the A and B genome clusters, respectively. The gene phylogenetic trees showed that A. hypogaea is more closely related to the diploid species A. duranensis and A. ipaensis than to the wild tetraploid species A. monticola, suggesting that A. monticola is not a progenitor of the cultivated peanut. In addition, for the stearoyl-ACP desaturase, the A. duranensis sequence was identical with one of the sequences of A. hypogaea and the A. ipaensis sequence was identical with the other. These results support the hypothesis that A. duranensis and A. ipaensis are the most likely diploid progenitors of the cultivated tetraploid A. hypogaea.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esg061DOI Listing

Publication Analysis

Top Keywords

cultivated peanut
16
tetraploid species
12
diploid species
12
phylogenetic relationship
8
progenitors cultivated
8
stearoyl-acp desaturase
8
fatty acid
8
acid desaturases
8
genome diploid
8
duranensis ipaensis
8

Similar Publications

Genome-Wide Identification, Functional Characterization, and Stress-Responsive Expression Profiling of Subtilase () Gene Family in Peanut ( L.).

Int J Mol Sci

December 2024

Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Subtilases (SBTs), known as serine proteases or phytoproteases in plants, are crucial enzymes involved in plant development, growth, and signaling pathways. Despite their recognized importance in other plant species, information regarding their functional roles in cultivated peanut ( L.) remains sparse.

View Article and Find Full Text PDF

Residue behavior of imidacloprid FS formulation in peanut cultivation system in china and its dietary and ecological risk assessment.

Environ Geochem Health

December 2024

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2, West Yuan-Ming-Yuan Road, Beijing, 100193, China.

Imidacloprid, a key neonicotinoid insecticide for pest control, is widely used in various crops, including peanuts. This study aimed to fill research gaps by analysing the residue behaviour of imidacloprid in peanut fields treated with flowable concentrate for seed treatment (FS) formulations while assessing potential risks to human health and ecosystems. A validated analytical method, using QuEChERS separation and UPLC-MS/MS detection, reliably quantified imidacloprid residues in peanuts and soil.

View Article and Find Full Text PDF

Groundnuts are considered as one of the most important cultivated food crops globally. Groundnuts are used for vegetable oil production, which generate a variety of by-products, such as peanut press cake (PPC). Groundnuts are sensitive to infection by aflatoxigenic fungi.

View Article and Find Full Text PDF

Genome-wide analysis of the laccase gene family in Arachis hypogaea and functional characterization of AhLAC63 involved in lignin biosynthesis and abiotic stress.

Int J Biol Macromol

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China. Electronic address:

Plant laccases (LACs) play a vital role in lignification and participate in multiple biotic/abiotic stress responses. However, little is known about their role in lignin deposition and stress resistance in cultivated peanut (Arachis hypogaea L.).

View Article and Find Full Text PDF

Progress in genetic engineering and genome editing of peanuts: revealing the future of crop improvement.

Physiol Mol Biol Plants

November 2024

Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA.

Article Synopsis
  • Peanuts, an important global oilseed crop, are nutritious but face challenges like pests, diseases, aflatoxins, and allergens, impacting both health and sustainability.
  • Traditional breeding methods have limitations, prompting the use of modern techniques such as next-generation sequencing and genome editing to enhance peanut traits and productivity.
  • Recent advancements offer the potential to create better peanut varieties, focusing on improving resistance to stress factors, nutritional content, and reducing harmful substances while optimizing transformation and editing methods.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!