Sympathetic activity and the underlying action potentials in sympathetic nerves: a simulation.

Am J Physiol Regul Integr Comp Physiol

Department of Biomedical Engineering, The Johns Hopkins School of Medicine, 606 Traylor Bldg., 720 Rutland Ave., Baltimore, Maryland 21205, USA.

Published: December 2003

Understanding the relationship between activity recorded in sympathetic nerves and the action potentials of the axons that contribute to that activity is important for understanding the processing of sympathetic activity by the central nervous system. Because this relationship cannot be determined experimentally and is difficult to predict analytically, we simulated the summed action potentials of 300 axons. This simulation closely resembled actual sympathetic activity and permitted us to know how many action potentials contributed to each burst of simulated sympathetic activity and the durations and amplitudes of each burst. We used these simulated data to examine a statistical method (cluster analysis) that has been used to identify and quantify bursts of sympathetic activity. Simulation indicated that the integrals of bursts, whether determined directly from the simulation or by integrating bursts detected by cluster analysis, were linearly correlated to the number of action potentials contributing to bursts. The variances of samples of the simulated signal were also linearly correlated to the number of action potentials. The amplitudes of bursts of sympathetic activity were less well correlated to the number of underlying action potentials. A linear relationship existed between the average number of action potentials contributing to simulated bursts and the integral of the amplitude spectra obtained by Fourier transform of the simulated activity. Finally, simulated experiments indicated that relatively brief recordings might be sufficient to detect statistically significant changes in sympathetic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00339.2003DOI Listing

Publication Analysis

Top Keywords

action potentials
32
sympathetic activity
28
correlated number
12
number action
12
sympathetic
9
activity
9
action
8
underlying action
8
potentials
8
sympathetic nerves
8

Similar Publications

Repeat expansions in gene in refractory chronic cough.

ERJ Open Res

January 2025

Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.

Introduction: Refractory chronic cough (RCC), persisting despite addressing contributory diagnoses, is likely underpinned by neurally mediated cough hypersensitivity. disorders are genetic neurodegenerative conditions caused by biallelic repeat expansion sequences, commonly presenting with cough, followed by neurological features including cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). The prevalence and identifying clinical characteristics of repeat-expansion disorders in patients with RCC are unknown.

View Article and Find Full Text PDF

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.

View Article and Find Full Text PDF

Transient chaos and periodic structures in a model of neuronal early afterdepolarization.

Chaos

January 2025

Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil.

The presence of chaos is ubiquitous in mathematical models of neuroscience. In experimental neural systems, chaos was convincingly demonstrated in membranes, neurons, and small networks. However, its effects on the brain have long been debated.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!