Surfactant plays an important role in lung homeostasis and is also involved in maintaining innate immunity within the lung. Lipopolysaccharide (LPS) from gram-negative bacteria is known to elicit acute proinflammatory responses in lung diseases such as acute respiratory distress syndrome and pneumonia, among others. Our previous studies demonstrated that the clinically used, natural surfactant product Survanta inhibited proinflammatory cytokine secretion from LPS-stimulated human alveolar macrophages. Here we investigated the effect of Survanta on mitogen-activated protein (MAP) and IkappaB kinases. Survanta blocked LPS-induced activation of nuclear factor-kappaB, a key regulatory transcription factor involved in cytokine production, by preventing phosphorylation of IkappaBalpha, and its subsequent degradation. IkappaB is phosphorylated by specific kinases (IKK) before degradation. Survanta inhibited activity of both alpha and beta subunits of IKK, thereby delaying the phosphorylation of IkappaB. Interestingly, IKK-alpha is predominant in alveolar macrophages, whereas IKK-beta predominates in monocytes. Survanta also inhibited extracellular signal-regulated kinase and p38 MAP kinase activity induced by LPS. Data are the first to show that surfactant may regulate lung homeostasis in part by inhibiting proinflammatory cytokine production through reduction of IKK and MAP kinase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/rcmb.2003-0263OC | DOI Listing |
Vet Sci
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
Since the first isolation of the porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) BJEU06-1 strain from a Beijing pig farm in 2006, more and more PRRSV-1 isolates have been identified in China. In this study, we performed the routine detection of PRRSV-1 using 1521 clinical samples collected in 12 provinces/cities from February 2022 to May 2024. Only three lung samples from severely diseased piglets collected in January 2024 were detected as PRRSV-1-positive (0.
View Article and Find Full Text PDFImmunohorizons
January 2025
Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.
Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA.
The use of genetically diverse mouse models offers a more accurate reflection of human genetic variability, improving the translatability of findings to heterogeneous human populations. This approach is particularly valuable in understanding diverse immune responses to disease by environmental exposures. This study investigates the inflammatory responses to acute exposures to mainstream cigarette smoke (CS) and environmental tobacco smoke (ETS) in two genetically diverse mouse strains, CC002/UncJ (UNC) & Diversity Outbred (J:DO).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Mycoplasma gallisepticum (MG) causes chronic respiratory disease (CRD), posing a significant threat to global poultry production. Current preventive strategies face limitations, emphasizing the need for alternative approaches such as breeding for disease resistance. This study identifies the matrix metalloproteinase 7 (MMP7) gene as a key factor in CRD resistance.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in critically ill patients. Macrophages, key modulators of immune responses, play a dual role in both promoting and resolving inflammation. Exosomes, small extracellular vesicles released by various cells, carry bioactive molecules that influence macrophage polarization and immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!