Nitric oxide inhibition of IGF-1 stimulated proteoglycan synthesis: role of cGMP.

J Orthop Res

The Ferguson Lab, Department of Orthopaedic Surgery, VA Pittsburgh Healthcare System, University of Pittsburgh School of Medicine, MSRC, Pittsburgh, PA 15240, USA.

Published: September 2003

Insulin-like growth factor (IGF-1) is critical for normal development and maintenance of cartilage, however arthritic cartilage responds poorly to IGF-1; part of this insensitivity is mediated by nitric oxide (NO). These studies test if cGMP is responsible for NO dependent insensitivity to IGF-1 in chondrocytes in situ in organ culture and in monolayer culture. Lapine cartilage and chondrocytes in monolayer culture and cartilage from osteoarthritic human knees were used. Tissues were exposed to NO from iNOS induced by IL-1, and proteoglycan synthesis in response to IGF-1 was evaluated in the presence and absence of cGMP dependent protein kinase (PKG) inhibitors. PKG activators inhibited IGF-1 responses in cartilage but not chondrocytes in monolayer. IL-1 stimulated cGMP synthesis in both monolayer and organ cultures. However, PKG inhibitors in cartilage slices but not in monolayer cultures restored response to IGF-1. PKG activity was detected in both fresh and monolayer chondrocytes, confirming this part of the cGMP signal cascade is intact in both of the preparations evaluated. Arthritic cartilage response to IGF-1 was restored by both N(G)-monomethyl-L-arginine inhibition of NO synthesis and PKG inhibitors. The data suggests that cGMP mediated effects are critical to NO actions on chondrocytes in situ in the cartilage matrix and supports a role for cGMP in the pathophysiologic effects of NO in osteoarthritis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0736-0266(03)00029-9DOI Listing

Publication Analysis

Top Keywords

response igf-1
12
pkg inhibitors
12
nitric oxide
8
igf-1
8
proteoglycan synthesis
8
role cgmp
8
cartilage
8
arthritic cartilage
8
chondrocytes situ
8
monolayer culture
8

Similar Publications

Scabiosa artropurperea, a member of the Dipsacaceae family and Scabiosa genus, is renowned for its medicinal properties. In the present study, we investigated the impact of Scabiosa artropurperea aqueous extract (AES) on the in vivo reproductive functions in Queue Fine de l'Ouest ewes, and on in vitro ovine granulosa cells. Ewes were synchronized for 14 days with intra-vagina progesterone (P4) devices (FGA, 20 mg) and divided into four groups receiving daily oral doses of 0, 1, 2, and 4 mg of AES/kg Live Body Weight (LBW), respectively.

View Article and Find Full Text PDF

This study evaluated the effect of wheat germ oil (WGO), Bacillus subtilis, and their combination on growth performance, immune response, nutrient digestibility, intestinal microbial, oxidative status, and gene expression in heat-stressed broilers. Four hundred one-day-old male Ross 308 broilers were distributed into five pens (20 birds/pen) in four experimental groups: a control (CON) without additives, WGO group fed diet with WGO at 200 mg.kg, BS group fed diet with B.

View Article and Find Full Text PDF

Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e.

View Article and Find Full Text PDF

Small spheroids for head and neck cartilage tissue engineering.

Sci Rep

December 2024

Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.

View Article and Find Full Text PDF

Introduction: Heavy metal pollution threatens the biodiversity and ecological equilibrium of the Nile River. This study investigates the impact of heavy metal pollution on aquatic animals such as Nile tilapia (Oreochromis niloticus) in the Damietta branch of the River Nile and El-Rayah El-Tawfeeky canal in Benha City in Egypt.

Methods: Fish and water samples were collected from the Damietta branch and El-Rayah El-Tawfeeky during the fall of 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!