The damage from rapid high energy impacts to cartilage may contribute to the development of osteoarthritis (OA). Understanding how and when cells are damaged during and after the impact may provide insight into how these lesions progress. Mature bovine articular cartilage on the intact patella was impacted with a flat impacter to 53 MPa in 250 ms. Cell viability was determined by culturing the cartilage with nitroblue tetrazolium for 18 h or for 4 days in medium containing 5% serum before labeling (5-day sample) and compared to adjacent, non-impacted tissue as viable cells per area. There was a decrease in viable cell density only in specimens with macroscopic cracks and the loss was localized primarily near matrix cracks, which were in the upper 25% of the tissue. This was confirmed using confocal microscopy with a fluorescent live/dead assay, using 5'-chloromethylfluorescein diacetate and propidium iodide. Cell viability in the impacted regions distant from visible cracks was no different than the non-impacted control. At 5 days, viable cell density decreased in the surface layer in both the control and impacted tissue, but there was no additional impact-related change. In summary, cell death after the impaction of cartilage on bone occurred around impact induced cracks, but not in impacted areas without cracks. If true in vivo, early stabilization of the damaged area may prevent late sequelae that lead to OA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0736-0266(03)00039-1DOI Listing

Publication Analysis

Top Keywords

cell death
8
matrix cracks
8
cell viability
8
viable cell
8
cell density
8
cell
6
cracks
6
cartilage
5
death cartilage
4
cartilage impact
4

Similar Publications

Neuropeptide Y in cancer-biological functions and potential clinical implications.

Cancer Metastasis Rev

January 2025

Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, BSB 231A, 3900 Reservoir Rd., NW, Washington, DC, 20057, USA.

Neuropeptide Y (NPY) is a sympathetic neurotransmitter widely distributed in the peripheral and central nervous system, affecting many physiological functions. Consequently, dysregulation of the NPY system contributes to numerous pathological disorders, including stress, obesity, and cancer. The pleiotropic functions of NPY in humans are mediated by G protein-coupled receptors (Y1R, Y2R, Y5R), which activate several signaling pathways and thereby regulate cell growth, differentiation, apoptosis, proliferation, angiogenesis, and metabolism.

View Article and Find Full Text PDF

Allogeneic haematopoietic stem cell transplantation (alloHSCT) is safe and effective for adolescents and adults with inborn errors of immunity (IEI) with severe disease manifestations of their disease. The haematopoietic cell transplantation comorbidity index (HCT-CI) score predicts transplant survival in non-malignant diseases, including IEIs. We hypothesised that immune dysregulation pre-transplant may also influence transplant outcomes.

View Article and Find Full Text PDF

Hyperprogressive disease induced by PD-1 inhibitor monotherapy in lung adenocarcinoma with HER2 exon 20 insertion: report of two cases and review of literature.

Discov Oncol

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.

Monotherapy with anti-programmed cell death protein 1 (PD-1) monoclonal antibody has been approved for the treatment of advanced non-small cell lung cancer with positive programmed cell death-ligand 1 (PD-L1) expression and oncogene wild type, which revealed survival benefit compared with chemotherapy. Nevertheless, certain patients develop rapid progression on anti-PD-1 inhibitor monotherapy. This novel pattern is called hyperprogressive disease (HPD), and the underlying mechanism and molecular characteristics still leaves not clear.

View Article and Find Full Text PDF

Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin.

ACS Nano

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.

Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation.

View Article and Find Full Text PDF

Apoptosis, or programmed cell death, is a fundamental biological process essential for maintaining tissue homeostasis. Dysregulation of apoptosis is implicated in a variety of diseases, including cancer, neurodegenerative disorders, and autoimmune conditions. This review provides an in-depth insight into the molecular mechanisms and signaling pathways that regulate apoptosis, highlighting both intrinsic and extrinsic pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!