2-5A synthetase is an important component of the mammalian antiviral 2-5A system. At present, the existence of 2-5A synthetase in the lowest animals, the marine sponges, has been demonstrated, although this enzyme has not been found in bacteria, yeast or plants. Here, we studied the 2-5A synthesizing capacity and the product profile of a variety of marine sponges belonging to Demospongia subclasses Tetractinomorpha and Ceractinomorpha. The 2-5A synthetase activity varied largely, in the range of four orders of magnitude, depending on the sponge species. Compared with the enzymes of the mammalian 2-5A synthetase family, the most active sponge species exhibited a surprisingly high 2-5A synthetase specific activity. Unlike the mammalian 2-5A synthetases that produce 2-5A oligomers in the presence of a double-stranded RNA activator, the 2-5A synthetase(s) from sponges were active without the addition of dsRNA. The sponge species differed in their product profiles. A novel product pool formed by Chondrosia reniformis was identified as a series of long 2-5A oligomers (up to 17-mers) with the prevalence of heptamers and octamers. The large variability of qualitative and quantitative characteristics of sponge 2-5A synthetases may refer to the occurrence of a variety of 2-5A synthetase isozymes in sponges.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1389-0344(03)00059-5DOI Listing

Publication Analysis

Top Keywords

2-5a synthetase
24
2-5a
14
marine sponges
12
sponge species
12
2-5a synthetases
12
qualitative quantitative
8
2-5a synthesizing
8
synthesizing capacity
8
mammalian 2-5a
8
2-5a oligomers
8

Similar Publications

Abundant infiltration of tumor-associated macrophages (TAMs) within the tumor stroma plays a pivotal role in inducing immune escape in pancreatic cancer (PC). Lactate serves as a direct regulator of macrophage polarization and functions, although the precise regulation mechanism remains inadequately understood. Our study revealed that PC cells (PCs) promote macrophage polarization toward M2d through high lactate secretion.

View Article and Find Full Text PDF

Clinically, phosphodiesterase type 5 inhibitors (PDE5-Is) remain the first-line therapy for erectile dysfunction (ED) patients; however, approximately 35% of these patients are still failing to respond to the therapeutic effects. So, urgent needs are required to identify novel therapeutic targets for ED. Hence, in this report, it was the first time for us to integrate single-cell RNA-sequencing (scRNA-Seq), mendelian randomization (MR) analysis with expression quantitative trait loci (eQTL), and protein quantitative trait loci (pQTL) data to find new treatment targets for ED.

View Article and Find Full Text PDF

The Sdp-SH3b2 domain contained in N6.2-derived extracellular vesicles inhibit murine norovirus replication.

Front Immunol

December 2024

Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.

The internalization of N6.2 extracellular vesicles (EVs) by cells results in a significant induction of the 2',5'-oligoadenylate synthetase (OAS) pathway. It also induces expression of and .

View Article and Find Full Text PDF

Background: Breast cancer is the most common malignancy among women worldwide, characterized by complex molecular and cellular heterogeneity. Despite advances in diagnosis and treatment, there is an urgent need to identify reliable biomarkers and therapeutic targets to improve early detection and personalized therapy. The OAS (2'-5'-oligoadenylate synthetase) family genes, known for their roles in antiviral immunity, have emerged as potential regulators in cancer biology.

View Article and Find Full Text PDF

OAS1 induces endothelial dysfunction and promotes monocyte adhesion through the NFκB pathway in atherosclerosis.

Arch Biochem Biophys

January 2025

The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China; Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong, 510120, China. Electronic address:

Cardiovascular disease is characterized by chronic inflammation and atherosclerosis (AS) is the pathological basis. Mitigating endothelial dysfunction and mononuclear cell adhesion is a crucial approach in impeding the initial advancement of AS. As an inflammation-immune regulation-related protein, 2'-5'-oligoadenylate synthetase 1 (OAS1) plays a critical role in inflammation, but its impact on endothelial dysfunction and mononuclear cell adhesion is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!