Improving productivity is a usual requirement for most biotechnological processes, and the utilisation of two-phase aqueous organic systems has proved to be an effective way to improve the productivity of poorly water-soluble or toxic compounds. The high hydrophobicity of beta-carotene, which is highly demanded by the pharma and agrofood industry, makes it a good candidate for aqueous/organic biphasic photoproduction. In the present work we have investigated the viability of a two-phase system for the production of beta-carotene by the marine microalgae Dunaliella salina using decane as organic phase. Decane, with a logP(octanol) value of 5.6, showed no toxicity to Dunaliella cells for more than 72 h, and its ability for beta-carotene extraction is acceptable. Transferring Dunaliella cells from standard to carotenogenic conditions caused inhibition of chlorophyll production and induced a strong synthesis of beta-carotene. The two-phase aqueous/decane system was stable and beta-carotene content of the cells was increasing during 4-days. About 8% of the total carotenoids produced were excreted and extracted into the decane phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1389-0344(03)00048-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!