Isolation and characterization of beta-catenin downstream genes in early embryos of the ascidian Ciona savignyi.

Differentiation

Department of Zoology Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

Published: August 2003

Nuclear localization of beta-catenin is most likely the first step of embryonic axis formation or embryonic cell specification in a wide variety of animal groups. Therefore, the elucidation of beta-catenin target genes is a key research subject in understanding the molecular mechanisms of the early embryogenesis of animals. In Ciona savignyi embryos, nuclear accumulation of beta-catenin is the first step of endodermal cell specification. Previous subtractive hybridization screens of mRNAs between beta-catenin-overexpressed embryos and nuclear beta-catenin-depleted embryos have resulted in the identification of beta-catenin downstream genes in Ciona embryos. In the present study, I characterize seven additional beta-catenin downstream genes, Cs-cadherinII, Cs-protocadherin, Cs-Eph, Cs-betaCD1, Cs-netrin, Cs-frizzled3/6, and Cs-lefty/antivin. All of these genes were expressed in vegetal blastomeres between the 16-cell and 110-cell stages, although their spatial and temporal expression patterns were different from one another. In situ hybridizations and real-time PCR revealed that the expression of all of these genes was up-regulated in beta-catenin-overexpressed embryos, and down-regulated in beta-catenin-suppressed embryos. Therefore, the accumulation of beta-catenin in the nuclei of vegetal blastomeres activates various vegetally expressed genes with potentially important functions in the specification of these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-0436.2003.7106001.xDOI Listing

Publication Analysis

Top Keywords

beta-catenin downstream
12
downstream genes
12
ciona savignyi
8
beta-catenin step
8
cell specification
8
embryos nuclear
8
accumulation beta-catenin
8
beta-catenin-overexpressed embryos
8
vegetal blastomeres
8
beta-catenin
7

Similar Publications

TWIST1 Regulates FOXM1/β-Catenin to Promote the Growth, Migration, and Invasion of Ovarian Cancer Cells by Activating MFAP2.

J Biochem Mol Toxicol

February 2025

Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

TWIST1 is aberrantly expressed in ovarian cancer (OC). MFAP2 is a downstream target of TWIST1, and we previously found MFAP2 facilitated OC development by activating FOXM1/β-catenin. We planned to investigate the mechanisms of TWIST1 in OC.

View Article and Find Full Text PDF

The molecule events expression of TGF-β/Smad signaling pathway in morphological and structural developmental characteristics of gonads in goose embryos.

Poult Sci

January 2025

College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China. Electronic address:

China is the largest producer and consumer of geese with significant social and economic value in agriculture. The Jilin White Goose, known for its excellent egg-laying and reproductive characteristics, is a prominent breeding breed in the northeast of China widely used for cross-breeding.Gonad development is a complex process, which will differentiate into testes or ovaries, thus affecting sex determination.

View Article and Find Full Text PDF

MSAB limits osteoarthritis development and progression through inhibition of β-catenin-DDR2 signaling.

Bioact Mater

April 2025

Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

The aberrant activation of the canonical Wnt/β-catenin signaling has been identified as a significant contributor to the pathogenesis of osteoarthritis (OA), exacerbating OA symptoms and driving OA progression. Despite its potential as a therapeutic target, clinical translation is impeded by the lack of a targeting delivery system and effective drug candidate that can modulate steady-state protein levels of β-catenin at post-translational level. Our study addresses these challenges by offering a new approach for OA treatment.

View Article and Find Full Text PDF

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play vital roles in the development and progression of various tumors through multiple mechanisms. Among these, HOTTIP (HOXA transcript at the distal tip) stands out as an intriguing candidate with diverse functions in several malignancies, including breast cancer and gynecologic cancers such as ovarian, cervical, and endometrial cancers, which are significant global health concerns. HOTTIP interacts with key signaling pathways associated with these cancers, including Wnt/β-catenin, PI3K/AKT, and MEK/ERK pathways, enhancing their activation and downstream effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!