Progesterone receptor gene and protein expression in the anterior preoptic area and hypothalamus of defeminized rats.

J Neurobiol

Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., México.

Published: September 2003

Progesterone receptor (PR) plays an important role during sexual differentiation of the rat brain. The objective of the present study was to determine PR protein and gene expression pattern in preoptic-anterior hypothalamic area (POA-AHA) and hypothalamus (HYP), after estradiol or testosterone treatment during the postnatal critical period of sexual differentiation of the rat brain (defeminized animals). Three-day-old female rats were subcutaneously (s.c.) injected with a single dose of 17beta-estradiol (200 microg), or testosterone enanthate (200 microg), or vehicle (corn oil). POA-AHA and HYP were dissected 3 h, 24 h, and 14 days, as well as on the day of vaginal opening (VO) after treatments. Other animals, previously treated as above, were acutely injected with 17beta-estradiol (5 microg) on the day of VO; POA-AHA and HYP were obtained 3 h later. Total RNA was extracted and processed for semiquantitative RT-PCR and tissue slices were prepared for protein detection by immunohistochemistry. We observed that PR mRNA expression was increased in POA-AHA and HYP of the animals treated with estradiol or testosterone 3 hours after treatments, compared with the vehicle-treated control group. We also found a significant increase in PR mRNA and protein expression in POA-AHA and HYP on the day of VO in both estradiol and testosterone defeminized rats. Interestingly, the acute administration of estradiol on the day of VO (VO + E(2)) did not increase PR mRNA or protein expression in POA-AHA and HYP of either estradiol or testosterone defeminized animals, as opposed to the marked induction observed in the intact animals of the control group. The overall results suggest that estradiol and testosterone treatment during the postnatal critical period of sexual differentiation of the brain modifies the regulation of the PR mRNA and protein expression during early onset of maturity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/neu.10241DOI Listing

Publication Analysis

Top Keywords

estradiol testosterone
20
poa-aha hyp
20
protein expression
16
sexual differentiation
12
mrna protein
12
progesterone receptor
8
defeminized rats
8
differentiation rat
8
rat brain
8
hyp estradiol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!