The accumulation of PrP(res), the protease-resistant abnormal form of the host-encoded cellular prion protein, PrP(C), plays a central role in transmissible spongiform encephalopathies. Human contamination by bovine spongiform encephalopathy (BSE) has propelled many scientific teams on a highway for anti-prion drug development. This study reports that heparan sulfate mimetics (HMs), developed originally for their effect on tissue regeneration, abolish prion propagation in scrapie-infected GT1 cells. PrP(res) does not reappear for up to 50 days post-treatment. When tested in vivo, one of these compounds, HM2602, hampered PrP(res) accumulation in scrapie- and BSE-infected mice and prolonged significantly the survival time of 263K scrapie-infected hamsters. Interestingly, HM2602 is an apparently less toxic and more potent inhibitor of PrP(res) accumulation than dextran sulfate 500, a molecule known to exhibit anti-prion properties in vivo. Kinetics of PrP(res) disappearance in vitro and unaffected PrP(C) levels during treatment suggest that HMs are able to block the conversion of PrP(C) into PrP(res). It is speculated that HMs act as competitors of endogenous heparan sulfates known to act as co-receptors for the prion protein. Since these molecules are particularly amenable to drug design, their anti-prion potential could be developed further and optimized for the treatment of prion diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/vir.0.19073-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!