Purinergic inhibition of Na-K-Cl cotransport has been noted in various renal epithelial cells derived from the collecting tubule, including Madin-Darby canine kidney (MDCK) cells. In recent studies, we have observed purinergic inhibition of Na-K-Cl cotransport in C11-MDCK subclones (alpha-intercalated-like cells). Interestingly, Na-K-Cl cotransport activity was also detected in C7-MDCK subclones (principal-like cells) but was not affected by ATP. In this investigation, we have transfected the human Na-K-Cl cotransporter (huNKCC1) in both C11 and C7 cells to determine whether these differences in NKCC regulation by ATP were due to cell-specific purinoceptor signaling pathways or to cell-specific isoforms/splice variants of the transporter. In both cell lines, we found that endogenous as well as huNKCC1-derived cotransport activity was restricted to the basolateral side. In addition, we were able to show that extracellular application of 100 microM ATP or 100 microM UTP abolished NKCC activity in both mock- and huNKCC1-transfected C11 cells but not in mock- and huNKCC1-transfected C7 cells; in C11 cells, intriguingly, this inhibition was not affected by inhibitors of RNA and protein synthesis and occurred even though expression levels of UTP-sensitive P2Y2-, P2Y4-, and P2Y6-purinoceptors were not different from those observed in C7 cells. These results suggest that C11 cells express an undetermined type of UTP-sensitive P2-purinoceptors or a unique P2Y-purinoceptor-triggered signaling cascade that leads to inhibition of NKCC1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00386.2002 | DOI Listing |
Cell Biochem Biophys
January 2025
Department of Obstetrics and Gynecology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, China.
Background: Endometriosis (EMS) is a difficult gynecological disease to cure. Frizzled-7 (FZD7) has been shown to be associated with the development of EMS, but its specific mechanism remains unclarified. This study aims to explore the role of FZD7 in EMS.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
Cerebral ischemia/reperfusion injury (IRI) is pathologically associated with ferroptosis. Dexmedetomidine (Dex) exerts neuroprotective activity after cerebral IRI. Our work focused on probing the pharmacologic effect of Dex on ferroptosis during cerebral IRI and the mechanisms involved.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China.
Subarachnoid hemorrhage (SAH) is a specific type of stroke. Dihydroquercetin (DHQ), a flavonoid, is known for its various pharmacological properties. This study aimed to explore the roles and mechanisms of DHQ in influencing the progression of SAH.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!