High asymmetric induction with beta-turn-derived palladium phosphine complexes.

Org Lett

Department of Chemistry, Washington University, One Brookings Drive, Campus 1134, Saint Louis, Missouri 63130-4899, USA.

Published: August 2003

[reaction: see text] Work toward the development of a bisphosphine ligand system for the palladium-catalyzed addition to cyclic allyl acetates is reported. A parallel approach using phosphine-containing amino acids in conjunction with natural amino acids was used to develop a selective ligand system. The ligand system was examined while attached to the polymer support as well as in solution. Selectivites with the difficult substrate 3-acetoxycyclopentene of up to 95% ee are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol035097jDOI Listing

Publication Analysis

Top Keywords

ligand system
12
amino acids
8
high asymmetric
4
asymmetric induction
4
induction beta-turn-derived
4
beta-turn-derived palladium
4
palladium phosphine
4
phosphine complexes
4
complexes [reaction
4
[reaction text]
4

Similar Publications

Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants.

Vaccines (Basel)

November 2024

School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.

The Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor (PRR), which has shown much promise as a molecular target for the development of T1/T17-skewing vaccine adjuvants. In 2009, the first non-proteinaceous Mincle ligands, trehalose dimycolate (TDM) and trehalose dibehenate (TDB), were identified. This prompted a search for other Mincle agonists and the exploration of Mincle agonists as vaccine adjuvants for both preventative and therapeutic (anti-cancer) vaccines.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is the predominant endocrine disorder among women of reproductive age and represents the leading cause of anovulatory infertility, which imposes a considerable health and economic burden. Currently, medications used to treat PCOS can lead to certain adverse reactions, such as affecting fertility and increasing the risk of venous thrombosis. Drug delivery systems utilizing nanomaterials, characterized by prolonged half-life, precision-targeted delivery, enhanced bioavailability, and reduced toxicity, are currently being employed in the management of PCOS.

View Article and Find Full Text PDF

Background/objectives: Immune checkpoints are essential for regulating excessive autoimmune responses and maintaining immune homeostasis. However, in the tumor microenvironment, these checkpoints can lead to cytotoxic T cell exhaustion, allowing cancer cells to evade immune surveillance and promote tumor progression. The expression of programmed death-ligand 1 (PD-L1) in cancer cells is associated with poor prognoses, reduced survival rates, and lower responses to therapies.

View Article and Find Full Text PDF

Background/objectives: Pasireotide (PAS) is a somatostatin receptor ligand (SRL) used to treat acromegaly, a chronic condition caused by excess growth hormone. While it offers significant benefits as a second-line treatment for uncontrolled acromegaly, its use raises major concerns due to hyperglycemic side effects and gastrointestinal issues, the latter being similar to those seen with first-generation SRLs. The aim of this study is to evaluate the real-world evidence on adverse drug reactions (ADRs) reported for PAS in the EudraVigilance database, in comparison to other established drug-based therapies for acromegaly.

View Article and Find Full Text PDF

: The key components of the blood-brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. Nearly all large therapeutic molecules and over 90% of small-molecule drugs cannot cross the BBB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!