The RNA-mediated pathogenesis model for the myotonic dystrophies DM1 and DM2 proposes that mutant transcripts from the affected genes sequester a family of double-stranded RNA-binding factors, the muscleblind proteins MBNL1, MBNL2 and MBNL3, in the nucleus. These proteins are homologues of the Drosophila muscleblind proteins that are required for the terminal differentiation of muscle and photoreceptor tissues, and thus nuclear sequestration of the human proteins might impair their normal function in muscle and eye development and maintenance. To examine this model further, we analyzed the expression pattern of the mouse Mbnl1, Mbnl2, and Mbnl3 genes during embryonic development and compared muscleblind gene expression to Dmpk since the RNA pathogenesis model for DM1 requires the coordinate synthesis of mutant Dmpk transcripts and muscleblind proteins. Our studies reveal a striking overlap between the expression of Dmpk and the muscleblind genes during development of the limbs, nervous system and various muscles, including the diaphragm and tongue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1567-133x(03)00064-4 | DOI Listing |
Brain
October 2024
Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France.
Muscleblind-like proteins (MBNLs) are a family of RNA-binding proteins that play essential roles in the regulation of RNA metabolism. Beyond their canonical role in RNA regulation, MBNL proteins have emerged as key players in the pathogenesis of Myotonic Dystrophy type 1 (DM1). In DM1, sequestration of MBNL proteins by expansion of the CUG repeat RNA leads to functional depletion of MBNL, resulting in deregulated alternative splicing and aberrant RNA processing, which underlie the clinical features of the disease.
View Article and Find Full Text PDFInt J Mol Sci
February 2024
Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
Loss of function of members of the muscleblind-like (MBNL) family of RNA binding proteins has been shown to play a key role in the spliceopathy of RNA toxicity in myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children. MBNL1 and MBNL2 are the most abundantly expressed members in skeletal muscle. A key aspect of DM1 is poor muscle regeneration and repair, leading to dystrophy.
View Article and Find Full Text PDFBiomed J
August 2024
Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
Background: Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the 3' untranslated region of the DM1 protein kinase gene. Characteristic degenerative muscle symptoms include myotonia, atrophy, and weakness. We previously proposed an Musashi homolog 2 (MSI2)>miR-7>autophagy axis whereby MSI2 overexpression repressed miR-7 biogenesis that subsequently de-repressed muscle catabolism through excessive autophagy.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
April 2023
Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Aims: Muscleblind-like 2 (MBNL2) plays a crucial role in regulating alternative splicing during development and mouse loss of MBNL2 recapitulates brain phenotypes in myotonic dystrophy (DM). However, the mechanisms underlying DM neuropathogenesis during brain development remain unclear. In this study, we aim to investigate the impact of MBNL2 elimination on neuronal development by Mbnl2 conditional knockout (CKO) mouse models.
View Article and Find Full Text PDFNucleic Acids Res
February 2023
Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!