Voltage-gated channels involved in taste responses and characterizing taste bud cells in mouse soft palates.

Brain Res

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan.

Published: August 2003

Taste bud cells (TBCs) on soft palates differ from those on tongues in innervation and chemosensitivity. We investigated voltage-gated channels involved in the taste responses of TBCs on mouse soft palates under in-situ tight-seal voltage/current-clamp conditions. Under the cell-attached mode, TBCs spontaneously fired action currents, which were blocked by application of 1 microM TTX to TBC basolateral membranes. Firing frequencies increased in response to taste substances applied to TBC receptor membranes. Under the whole-cell clamp mode, as expected, TBCs produced various voltage-gated currents such as TTX-sensitive Na+ currents (INa), outward currents (Iout) including TEA-sensitive and insensitive currents, inward rectifier K+ currents (Iir), and Ca2+ currents including T-type, P/Q-type, and L-type Ca2+ currents. We classified TBCs into three types based on the magnitude of their voltage-gated Na+ currents and membrane capacitance. HEX type (60% of TBCs examined) was significantly larger in Na+ current magnitude and smaller in membrane capacitance than LEX type (23%). NEX type (17%) had no Na+ currents. HEX type was equally distributed within single taste buds, while LEX type was centrally distributed, and NEX type was peripherally distributed. There were correlations between these electrophysiological cell types and morphological cell types determined by three-dimensional reconstruction. The present results show that soft palate taste buds contain TBCs with different electrophysiological properties, and suggest that their co-operation is required in taste transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(03)03013-0DOI Listing

Publication Analysis

Top Keywords

soft palates
12
na+ currents
12
currents
10
voltage-gated channels
8
channels involved
8
taste
8
involved taste
8
taste responses
8
taste bud
8
bud cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!