AI Article Synopsis

Article Abstract

Prepulse inhibition of the acoustic startle response (PPI) is a cross-species measure of sensorimotor gating, which is severely disrupted in patients with schizophrenia. PPI deficits can be produced in experimental animals by administration of selective D(2)-like dopamine receptor agonists in the nucleus accumbens (NAc). G proteins coupled to these receptors reportedly are altered in the NAc of patients with schizophrenia. Therefore, we sought to determine whether experimental inactivation of intracellular G proteins in the NAc alters PPI. In adult male Sprague-Dawley rats, baseline PPI was determined by presenting acoustic pulse stimuli (120 dB) alone or preceded 100 ms earlier by prepulse stimuli (3, 6 or 12 dB above 70 dB ambient noise). PPI disruption was assessed in the presence of quinpirole (0.0, 0.05, 0.1, 0.5 mg/kg, sc), and pertussis toxin (PTX; 0.05 microg/side) was then infused into the NAc bilaterally. Ten days later, quinpirole-mediated disruption of PPI was significantly reduced; neither PTX alone, nor heat-inactivated PTX had any effect on quinpirole-induced PPI reductions. PPI was significantly higher after PTX infusion upon moderate quinpirole challenge, suggesting that D(2)-like receptors were less effective. PTX treatment significantly reduced basal and dopamine-stimulated [35S]GTPgammaS binding in the NAc core and shell, and reduced G(i)(alpha) protein immunoreactivity in the NAc. The results suggest that PPI disruption mediated by D(2)-like receptor activation in the NAc depends on coupling to G(i) and G(o) proteins, alteration of which could cause sensorimotor gating deficits in schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(03)02880-4DOI Listing

Publication Analysis

Top Keywords

sensorimotor gating
12
ppi
9
nucleus accumbens
8
gating deficits
8
patients schizophrenia
8
ppi disruption
8
nac
7
ptx
5
reduced
4
reduced protein
4

Similar Publications

The article provides a review of the sensory processing (SP) phenomenon, its origins, theoretical models, and neurophysiological foundations. Initiated by A. Jean Ayres' research on sensory integration in the 1960s and 70s, this field has evolved, leading to the development of concepts such as Winnie Dunn's four quadrant model and Miller's ecological model of sensory modulation.

View Article and Find Full Text PDF

Transient receptor potential channel subfamily M member 3 (TRPM3) is a Ca-permeable cation channel activated by the neurosteroid pregnenolone sulfate (PregS) or heat, serving as a nociceptor in the peripheral sensory system. Recent discoveries of autosomal dominant neurodevelopmental disorders caused by gain-of-function mutations in TRPM3 highlight its role in the central nervous system. Notably, the TRPM3 inhibitor primidone, an anticonvulsant, has proven effective in treating patients with TRPM3-linked neurological disorders and in mouse models of thermal nociception.

View Article and Find Full Text PDF

Explaining basic illness mechanisms is an important step in communicating functional neurological symptoms. Clinical signs for motor symptoms, such as the Hoover test, have proven an excellent basis for mechanistic explanations. Here, I recommend a simple technique for eliciting tingling sensations through directed bodily attention, as a helpful experiential starting point for explanations of sensory gating and somatosensory amplification in patients with functional hyperaesthesia, paraesthesia and chronic pain.

View Article and Find Full Text PDF

Unlabelled: Sensory filtering - prioritizing relevant stimuli while ignoring irrelevant ones - is crucial for animals to adapt and survive in complex environments. While this phenomenon has been primarily studied in organisms with complex nervous systems, it remains unclear whether simpler organisms also possess such capabilities. Here, we studied temporal information processing in , a freshwater planarian flatworm with a primitive nervous system.

View Article and Find Full Text PDF

Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats.

Methods: Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!