The physiological role of any of the epidermal growth factor (EGF) receptor tyrosine kinases has yet to be determined in zebrafish. We isolated a zebrafish homologue of EGFR (egfr) that shows a 63% amino acid overall identity to human EGFR but with 90% amino acid identity in the kinase domain. Whole mount in situ hybridization showed ubiquitous distribution of egfr transcripts during gastrulation, somitogenesis and later stages. When expressed in Chinese hamster ovary cells, zebrafish Egfr was a functional receptor that responded to EGF by receptor tyrosine phosphorylation and activation of MAP kinase. The function of zebrafish Egfr in vivo was determined by inhibiting its activity using EGFR kinase inhibitors and antisense morpholinos (MO), which inhibited Egfr kinase activity and translation of egfr messenger RNA into protein, respectively. The zebrafish is a particularly excellent model for studying cardiovascular development because zebrafish are transparent allowing direct visualization of the heart and circulation in the blood vessels. Inhibition of zebrafish Egfr activity in vivo impeded blood flow via the outflow tract into the aorta and impeded circulation in the axial and intersegmental vessels by 80 h post-fertilization. Analysis of the heart showed that the heart chambers and pericardial sacs were dilated and the outflow tracts were narrowed. Together these results suggested that zebrafish Egfr has a cardiovascular function in the developing zebrafish that is required for normal circulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0925-4773(03)00068-6 | DOI Listing |
Molecules
January 2025
College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
var. (Willd.) Maesen & S.
View Article and Find Full Text PDFPhytomedicine
December 2024
Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. Electronic address:
Background: A prenylated flavonoid, broussoflavonol F (BFF), was isolated from Macaranga genus with cytotoxicities against various cancer cells, though its underlying mechanisms have not been fully elucidated.
Hypothesis: This study aimed to investigate the anti-tumor and anti-angiogenesis activities of BFF and its underlying mechanisms in colon cancer.
Method: In the in vitro study, the cytotoxic effects of BFF in human colon cancer HCT-116 and LoVo cells were examined using MTT assay, BrdU assay and colony formation assay.
Biomolecules
August 2024
School of Medicine, Deakin University, Geelong, VIC 3216, Australia.
Cell Mol Biol Lett
September 2024
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
Background: Metastasis, the leading cause of renal cell carcinoma (RCC) mortality, involves cancer cells resisting anoikis and invading. Until now, the role of the matrix metalloproteinase (MMP)-related enzyme, A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1), in RCC anoikis regulation remains unclear.
Methods: The clinical significance of ADAMTS1 and its associated molecules in patients with RCC was investigated using data from the Gene Expression Omnibus (GEO) and TCGA datasets.
Ecotoxicol Environ Saf
October 2024
Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!