Our recent studies have shown that the de novo sphingolipids play a role in apoptosis of photosensitized cells. To elucidate the involvement of the de novo sphingolipids in reactive oxygen species (ROS) production and mitochondrial depolarization during apoptosis, the stress inducer photodynamic therapy (PDT) with the photosensitizer Pc 4 was used. In Jurkat cells PDT-triggered ROS production or mitochondrial membrane potential (deltapsi(m)) loss was not prevented by the de novo sphingolipid synthesis inhibitor ISP-1. However, PDT + C16-ceramide led to enhanced mitochondrial depolarization and DEVDase activation. The superoxide dismutase mimic manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) protected Jurkat cells from ROS generation and apoptosis, but not from deltapsi(m) reduction. Sphinganine or C16-ceramide counteracted MnTBAP-induced protection from apoptosis in Jurkat, as well as CHO cells. In LY-B cells, CHO-derived mutants deficient in serine palmitoyltransferase (SPT) activity and the de novo sphingolipid synthesis, mitochondrial depolarization, but not ROS generation, was suppressed post-PDT. In LY-B cells transfected with the SPT component LCB1, deltapsi(m) collapse post-PDT was restored. The data support the following hypotheses: MnTBAP protects against apoptosis via steps downstream of deltapsi(m) loss; de novo sphingolipids are not required for ROS generation, but can play a role in deltapsi(m) dissipation in photosensitized apoptotic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-4827(03)00235-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!