A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of thermal tissue effects induced by contact application of fiber guided laser systems. | LitMetric

AI Article Synopsis

  • This study compares the effects of various laser systems (Ho:YAG, Nd:YAG, and diode lasers) on ex vivo muscle tissue under controlled conditions.
  • Different wavelengths resulted in varying tissue responses, with Ho:YAG showing the highest ablation and coagulation capabilities compared to Nd:YAG and diode lasers.
  • The findings suggest that Ho:YAG-laser light could be more effective for precise tissue reduction in surgeries, especially when treating large volumes in non-critical areas.

Article Abstract

Background And Objectives: Laser light of various wavelengths is being used for surgical procedures in otolaryngology. Apart from well-known fiber guided laser systems such as Nd:YAG- and Ho:YAG-lasers, newly developed diode-laser systems of different wavelengths have recently become popular in surgery. In order to compare the effects of fiber guided laser light with respect to their induced tissue effects, these laser systems have been studied and compared under reproducible test conditions.

Study Design/materials And Methods: The laser fibers of four common medical laser systems (Ho:YAG- (lambda = 2,080 nm), Nd:YAG- (lambda = 1,064 nm), and diode-laser (lambda = 830 and 940 nm)) were fixed to a computer controlled stepper motor. The laser light was applied in contact mode onto ex vivo muscle tissue, using identical power settings and a reproducible application procedure (application velocity, application angle) under constant conditions (temperature of tissue and volume). The size of the thermal effects on the tissue (e.g., coagulation, ablation, and carbonization zones) were measured and photographed via optical microscopy.

Results: Depending on the laser wavelength used, the experimental results proved different degrees of tissue responses. Nd:YAG- and diode-lasers provided for only low coagulation effects in the depth of the tissue, but produced severe carbonization at the surface. Ho:YAG-laser light revealed the highest ablation capabilities of the lasers investigated in addition to large coagulation zones which were of larger extent than those produced by Nd:YAG- and diode-laser light.

Conclusions: Contact treatment by Ho:YAG-laser light might provide for a precise and effective tissue reduction in a bloodless manner because of its high ablation and coagulation capabilities, especially if large volumes are treated and structures beneath are non-critical. In comparison, Nd:YAG- and diode-laser treatment in contact application showed low thermal tissue effects (i.e., coagulation) in the depth, resulting from a high power loss caused by the development of large carbonization zones at the surface of the tissue. Therefore, the degree of blood-perfusion and the capability of vessel-closure induced by these lasers should be taken into account. The presented investigation also revealed that in contact mode, the tested laser systems produced tissue effects, which were highly different from those already described for applications in non-contact mode. Physicians who are performing laser treatments in close boundaries must be aware that changing from non-contact to contact mode in laser application greatly influences the resulting tissue effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.10199DOI Listing

Publication Analysis

Top Keywords

tissue effects
20
laser systems
20
tissue
12
fiber guided
12
laser
12
guided laser
12
laser light
12
contact mode
12
thermal tissue
8
effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!