Corticotropin-releasing factor receptor types 1 and 2 are differentially expressed in pre- and post-synaptic elements in the post-natal developing rat cerebellum.

Eur J Neurosci

Laboratory for Cell Biology and Electron Microscopy, Department of Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

Published: August 2003

AI Article Synopsis

  • Corticotropin-releasing factor (CRF) receptors, CRF-R1 and CRF-R2, are important for managing stress responses and synaptic changes in the brain.
  • Both receptors were found in developing rat cerebellum, with CRF-R1 in Purkinje cells' regions and CRF-R2 on membranes, indicating different roles in signal transmission.
  • The findings suggest that CRF-R2 is directly involved in synaptic communication, while CRF-R1 operates through a broader signaling mechanism, crucial for modulating sensory input in the cerebellum.

Article Abstract

Corticotropin-releasing factor (CRF)-like proteins act via two G-protein-coupled receptors (CRF-R1 and CRF-R2) playing important neuromodulatory roles in stress responses and synaptic plasticity. The cerebellar expression of corticotropin-releasing factor-like ligands has been well documented, but their receptor localization has not. This is the first combination of a light microscopic and ultrastructural study to localize corticotropin-releasing factor receptors immunohistologically in the developing rat cerebellum. Both CRF-R1 and CRF-R2 were expressed in climbing fibres from early stages (post-natal day 3) to the adult, but CRF-R2 immunoreactivity was only prominent throughout the molecular layer in the posterior cerebellar lobules. CRF-R1 immunoreactivity was concentrated in apical regions of Purkinje cell somata and later in primary dendrites exhibiting a diffuse cytoplasmic appearance. In Purkinje cells, CRF-R1 immunoreactivity was never membrane bound post-synaptically in dendritic spines while CRF-R2 immunoreactivity was found on plasmic membranes of Purkinje cells from post-natal day 15 onwards. We conclude that the localization of these receptors in cerebellar afferents implies their pre-synaptic control of the release of corticotropin-releasing factor-like ligands, impacting on the sensory information being transmitted from afferents. Furthermore, the fact that CRF-R2 is membrane bound at synapses, while CRF-R1 is not, suggests that ligands couple to CRF-R2 via synaptic transmission and to CRF-R1 via volume transmission. Finally, the distinct expression profiles of receptors along structural domains of Purkinje cells suggest that the role for these receptors is to modulate afferent inputs.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2003.02776.xDOI Listing

Publication Analysis

Top Keywords

corticotropin-releasing factor
12
purkinje cells
12
developing rat
8
rat cerebellum
8
crf-r1 crf-r2
8
corticotropin-releasing factor-like
8
factor-like ligands
8
post-natal day
8
crf-r2 immunoreactivity
8
crf-r1 immunoreactivity
8

Similar Publications

Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA receptor-deficient mice.

Neuropharmacology

January 2025

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain. Electronic address:

Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA-null mice of both sexes.

View Article and Find Full Text PDF

Elevated cortisol in chronic stress and mood disorders causes morbidity including metabolic and cardiovascular diseases. There is therefore interest in developing drugs that lower cortisol by targeting its endocrine pathway, the hypothalamic-pituitary-adrenal (HPA) axis. However, several promising HPA-modulating drugs have failed to reduce long-term cortisol in mood disorders, despite effectiveness in other hypercortisolism conditions such as Cushing's syndrome.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) has been shown in multiple studies to be associated with the estimated glomerular filtration rate (eGFR). However, studies focusing on Chinese populations are lacking. We conducted an epigenome-wide association study to investigate the association between DNAm and eGFR in Chinese monozygotic twins.

View Article and Find Full Text PDF

Increasing evidence supports the presence of oxytocin deficiency (OXT-D) in patients with hypopituitarism and hypothalamic damage (HHD), that might be associated with neuropsychological deficits and sexual dysfunction, leading to worse quality of life (QoL). Therefore, identifying a provocative test to diagnose an OXT-D will be important. Corticotropin-releasing hormone (CRH) is a candidate for such a test as it increases oxytocin secretion in animal models.

View Article and Find Full Text PDF
Article Synopsis
  • Peripuberty is a crucial time for brain development, and blocking CRFR1 receptors in young rats helps minimize negative effects of early-life stress on neural function and behavior.
  • In an experiment, male rats showed immediate behavioral changes like reduced prepulse inhibition (PPI) after receiving a CRFR1 antagonist, while females only exhibited differences in behavior after becoming adults.
  • Long-term gene expression changes in the amygdala indicate that the effects of CRFR1 blockage during peripuberty impact different neural pathways in males and females, emphasizing the importance of understanding these effects for adolescent mental health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!