This work assesses the effect of lyophilization on the cytotoxicity and residual aldehyde concentration of glutaraldehyde-treated and lyophilized bovine pericardium (group A), comparing it to conventional glutaraldehyde-treated bovine pericardium (group B). Cytotoxicity was measured by incubating a pericardium sample from each group in saline and assessing the eluant's influence on cellular growth. Residual aldehydes were measured by HPLC. Although both groups' eluants exhibited some cytotoxicity, the eluant from group A was less cytotoxic, with a cytotoxicity index (IC50(%)) of 41%. Group B eluants all had marked cytotoxic effects; cell growth was 24.15% of the negative control at the most dilute eluant concentration (6.25%). The mean residual glutaraldehyde level was less in group A than in group B (2.36 +/- 0.11 and 9.90 +/- 3.70 g/l, respectively; n=3, P < 0.05), but residual formaldehyde levels did not differ. These results demonstrate that compared with conventional glutaraldehyde-treated bovine pericardium, lyophilized pericardium is less cytotoxic, with fewer glutaraldehyde residues.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1525-1594.2003.07275.xDOI Listing

Publication Analysis

Top Keywords

bovine pericardium
16
glutaraldehyde-treated bovine
12
lyophilization cytotoxicity
8
cytotoxicity residual
8
residual aldehydes
8
pericardium group
8
conventional glutaraldehyde-treated
8
group
7
pericardium
6
cytotoxicity
5

Similar Publications

Research towards regenerative dentistry focused on developing scaffold materials whose high performance induces cell adhesion support and guides tissue growth. An early study investigated the proliferation abilities and attachment of human periodontal ligament fibroblasts (HPLFs) on two bovine pericardium membranes with different thicknesses, 0.2 mm and 0.

View Article and Find Full Text PDF

Double-chambered right ventricle (DCRV) is a congenital heart disease. Most cases of DCRV are complicated by another congenital cardiac anomaly. Mostly, a ventricular septal defect (VSD) is the usual comorbidity.

View Article and Find Full Text PDF

Objective: The current management for complex urethral strictures commonly uses open reconstruction with buccal mucosa urethroplasty. However, there are multiple situations whereby buccal mucosa is inadequate (pan-urethral stricture or prior buccal harvest) or inappropriate for utilization (heavy tobacco use or oral radiation). Multiple options exist for use as alternatives or adjuncts to buccal mucosa in complex urethral strictures (injectable antifibrotic agents, augmentation urethroplasty with skin flaps, lingual mucosa, bladder mucosa, colonic mucosa, and new developments in tissue engineering for urethral graft material) (1, 2).

View Article and Find Full Text PDF

A Novel Polymer Film to Develop Heart Valve Prostheses.

Polymers (Basel)

November 2024

Icon Lab Gmbh Ltd., 1 Barrikad St., Nizhny Novgorod 603003, Russia.

Polymer heart valves are a promising alternative to bioprostheses, the use of which is limited by the risks of calcific deterioration of devitalized preserved animal tissues. This is especially relevant in connection with the increasingly widespread use of transcatheter valves. Advances in modern organic chemistry provide a wide range of polymers that can replace biological material in the production of valve prostheses.

View Article and Find Full Text PDF

Aim: To evaluate the short-term outcomes of Tissue Engineered Decellularized Bovine pericardium (Synkroscaff®) in congenital heart surgery as a prosthetic material.

Methodology: This is a prospective observational cohort study. SynkroScaff® was used as prosthetic material in cohort of successive patients under 18 years of age requiring cardiac surgery for congenital heart diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!