C3-like ADP-ribosyltransferases represent an expanding family of related exoenzymes, which are produced by Clostridia and various Staphylococcus aureus strains. Here we report on the cloning and biochemical characterization of an ADP-ribosyltransferase from Bacillus cereus strain 2339. The transferase encompasses 219 amino acids; it has a predicted mass of 25.2 kDa and a theoretical isoelectric point of 9.3. To indicate the relationship to the family of C3-like ADP-ribosyltransferases, we termed the enzyme C3cer. The amino acid sequence of C3cer is 30 to 40% identical to other C3-like exoenzymes. By site-directed mutagenesis, Arg(59), Arg(97), Tyr(151), Arg(155), Thr(178), Tyr(180), Gln(183), and Glu(185) of recombinant C3cer were identified as pivotal residues of enzyme activity and/or protein substrate recognition. Precipitation experiments with immobilized RhoA revealed that C3cerTyr(180), which is located in the so-called "ADP-ribosylating toxin turn-turn" (ARTT) motif, plays a major role in the recognition of RhoA. Like other C3-like exoenzymes, C3cer ADP-ribosylates preferentially RhoA and RhoB and to a much lesser extent RhoC. Because the cellular accessibility of recombinant C3cer is low, a fusion toxin (C2IN-C3cer), consisting of the N-terminal 225 amino acid residues of the enzyme component of C2 toxin from Clostridium botulinum and C3cer was used to study the cytotoxic effects of the transferase. This fusion toxin caused rounding up of Vero cells comparable to the effects of Rho-inactivating toxins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi034583bDOI Listing

Publication Analysis

Top Keywords

bacillus cereus
8
c3-like adp-ribosyltransferases
8
amino acid
8
c3-like exoenzymes
8
recombinant c3cer
8
residues enzyme
8
fusion toxin
8
c3cer
7
rho-specific bacillus
4
cereus adp-ribosyltransferase
4

Similar Publications

Virus Association with Bacteria and Bacterial Cell Components Enhance Virus Infectivity.

Food Environ Virol

January 2025

Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.

The transmission and infection of enteric viruses can be influenced by co-existing bacteria within the environment and host. However, the viral binding ligands on bacteria and the underlying interaction mechanisms remain unclear. This study characterized the association of norovirus surrogate Tulane virus (TuV) and murine norovirus (MNV) as well as the human enteric virus Aichi virus (AiV) with six bacteria strains (Pantoea agglomerans, Pantoea ananatis, Bacillus cereus, Enterobacter cloacae, Exiguobacterium sibiricum, Pseudomonas spp.

View Article and Find Full Text PDF

Growing interests in replacing conventional preservatives and antibiotics in food and pharmaceutical industries have driven the exploration of bacterial metabolites, especially those from strains with generally recognized as safe (GRAS) status, such as lactic acid bacteria (LAB). In this study, a supernatant cocktail derived from multiple LAB strains was prepared and its bioactivities-antimicrobial, antibiofilm, antioxidant, cytotoxicity, and stability-were thoroughly investigated. The cocktail's main components were identified using thermal and protease treatments, gas chromatography coupled to mass spectrometry (GC-MS), and flame ionization detection (GC-FID).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how well a gut bacteria strain, Bacillus cereus AP-01, can break down low-density polyethylene (LDPE), using experiments over 28 days to measure its effectiveness.
  • The researchers employed various methods like FTIR and SEM to analyze changes in LDPE structure and confirmed the bacterial strain through molecular characterization.
  • Results showed that the bacteria significantly degraded LDPE, with a 30.3% weight loss and changes in mechanical properties, highlighting its potential as a solution for plastic pollution.
View Article and Find Full Text PDF

(Gaertn) Roxb. and Retz. are significant botanicals in ancient Ayurvedic medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!