An industrial strain of Lactobacillus delbrueckii subsp. bulgaricus was grown in a synthetic medium on lactose as carbon substrate, in a pH-regulated fermentor. Growth proceeded in two distinct phases separated by a transient stationary phase. Various experimental approaches were used to identify the cause of this growth arrest. Growth experiments in L. bulgaricus culture supernatant fluids collected at different cultivation times in fermentor, and supplemented or not with various nutritional solutions, enabled us to discard the possibility of a nutritional limitation. Tube cultures of L. bulgaricus in medium supplemented with various lactic acid concentrations showed a potential inhibition by this metabolic end product but confirmed that this inhibition was not responsible for the cessation of growth. It was concluded that at least one inhibitory compound was produced during the growth phase of the strain, and this compound disappeared from the medium in the transient stationary phase, enabling the growth to start again later in the culture. Indeed, the stoichiometric analysis of the culture showed, firstly, that unidentified carbon compounds were produced from lactose during growth, which were probably converted in lactic acid during the transient stationary phase and, secondly, that part of the amino acids consumed gave catabolic end products. Finally, bacteriocin-like compounds were not considered to be responsible for this growth arrest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.10751 | DOI Listing |
Chaos
January 2025
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
We study an exactly solvable random walk model with long-range memory on arbitrary networks. The walker performs unbiased random steps to nearest-neighbor nodes and intermittently resets to previously visited nodes in a preferential way such that the most visited nodes have proportionally a higher probability to be chosen for revisit. The occupation probability can be expressed as a sum over the eigenmodes of the standard random walk matrix of the network, where the amplitudes slowly decay as power-laws at large times, instead of exponentially.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Power and Machines Engineering, The Higher Institute of Engineering at El- Shorouk City, El-Shorouk Academy, Cairo, 11837, Egypt.
The paper presents a comprehensive analysis of the IEEE-16 bus system under different operating conditions. It discusses the selection of suitable decomposition level and wavelet function for analyzing non-stationary signals to enhance power distribution network fault detection. MATLAB/Simulink is used to simulate the system, and transient fault current signals are processed with the MATLAB Wavelet Toolbox.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain.
From the dynamical point of view, most cognitive phenomena are hierarchical, transient and sequential. Such cognitive spatio-temporal processes can be represented by a set of sequential metastable dynamical states together with their associated transitions: The state is quasi-stationary close to one metastable state before a rapid transition to another state. Hence, we postulate that metastable states are the central players in cognitive information processing.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Dept. of Biol., University of Massachusetts Amherst, , Amherst, MA.
Lab rodent species commonly used to study the visual system and its development (hamsters, rats, and mice) are crepuscular/nocturnal, altricial, and possess simpler visual systems than carnivores and primates. To widen the spectra of studied species, here we introduce an alternative model, the Chilean degu (). This diurnal, precocial Caviomorph rodent has a cone enriched, well-structured retina, and well-developed central visual projections.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Chemistry and Physics, Augusta State University, 2500 Walton Way, Augusta, Georgia 30904, USA.
We investigate the dynamical phases and phase transitions arising in a classical two-dimensional anisotropic XY model under the influence of a periodically driven temporal external magnetic field in the form of a symmetric square wave. We use a combination of finite temperature classical Monte Carlo simulation, implemented within a CPU+GPU paradigm, utilizing local dynamics provided by the Glauber algorithm and a phenomenological equation-of-motion approach based on relaxational dynamics governed by the time-dependent free energy within a mean-field approximation to study the model. We investigate several parameter regimes of the variables (magnetic field, anisotropy, and the external drive frequency) that influence the anisotropic XY system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!