A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry. | LitMetric

The metabolic fluxes of central carbon metabolism were measured in chemostat-grown cultures of Methylobacterium extorquens AM1 with methanol as the sole organic carbon and energy source and growth-limiting substrate. Label tracing experiments were carried out using 70% (13)C-methanol in the feed, and the steady-state mass isotopomer distributions of amino acids derived from total cell protein were measured by gas chromatography coupled to mass spectrometry. Fluxes were calculated from the isotopomer distribution data using an isotopomer balance model and evolutionary error minimization algorithm. The combination of labeled methanol with unlabeled CO(2), which enters central metabolism in two different reactions, provided the discriminatory power necessary to allow quantification of the unknown fluxes within a reasonably small confidence interval. In wild-type M. extorquens AM1, no measurable flux was detected through pyruvate dehydrogenase or malic enzyme, and very little flux through alpha-ketoglutarate dehydrogenase (1.4% of total carbon). In contrast, the alpha-ketoglutarate dehydrogenase flux was 25.5% of total carbon in the regulatory mutant strain phaR, while the pyruvate dehydrogenase and malic enzyme fluxes remained insignificant. The success of this technique with growth on C(1) compounds suggests that it can be applied to help characterize the effects of other regulatory mutations, and serve as a diagnostic tool in the metabolic engineering of methylotrophic bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.10745DOI Listing

Publication Analysis

Top Keywords

extorquens am1
12
metabolic fluxes
8
methylobacterium extorquens
8
mass spectrometry
8
pyruvate dehydrogenase
8
dehydrogenase malic
8
malic enzyme
8
alpha-ketoglutarate dehydrogenase
8
total carbon
8
fluxes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!