Improved protein-ligand docking using GOLD.

Proteins

Astex Technology, Ltd., Cambridge, United Kingdom.

Published: September 2003

The Chemscore function was implemented as a scoring function for the protein-ligand docking program GOLD, and its performance compared to the original Goldscore function and two consensus docking protocols, "Goldscore-CS" and "Chemscore-GS," in terms of docking accuracy, prediction of binding affinities, and speed. In the "Goldscore-CS" protocol, dockings produced with the Goldscore function are scored and ranked with the Chemscore function; in the "Chemscore-GS" protocol, dockings produced with the Chemscore function are scored and ranked with the Goldscore function. Comparisons were made for a "clean" set of 224 protein-ligand complexes, and for two subsets of this set, one for which the ligands are "drug-like," the other for which they are "fragment-like." For "drug-like" and "fragment-like" ligands, the docking accuracies obtained with Chemscore and Goldscore functions are similar. For larger ligands, Goldscore gives superior results. Docking with the Chemscore function is up to three times faster than docking with the Goldscore function. Both combined docking protocols give significant improvements in docking accuracy over the use of the Goldscore or Chemscore function alone. "Goldscore-CS" gives success rates of up to 81% (top-ranked GOLD solution within 2.0 A of the experimental binding mode) for the "clean list," but at the cost of long search times. For most virtual screening applications, "Chemscore-GS" seems optimal; search settings that give docking speeds of around 0.25-1.3 min/compound have success rates of about 78% for "drug-like" compounds and 85% for "fragment-like" compounds. In terms of producing binding energy estimates, the Goldscore function appears to perform better than the Chemscore function and the two consensus protocols, particularly for faster search settings. Even at docking speeds of around 1-2 min/compound, the Goldscore function predicts binding energies with a standard deviation of approximately 10.5 kJ/mol.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.10465DOI Listing

Publication Analysis

Top Keywords

chemscore function
24
goldscore function
24
function
13
docking
11
goldscore
9
protein-ligand docking
8
function consensus
8
docking protocols
8
docking accuracy
8
protocol dockings
8

Similar Publications

Molecular modeling of multi-target analogs of huperzine A and applications in Alzheimer's disease.

J Mol Model

June 2024

NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Instituto Multidisciplinar de Química, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal do Rio de Janeiro, 27.971-525, Macaé, RJ, Rio de Janeiro, Brazil.

Context: Given the diverse pathophysiological mechanisms underlying Alzheimer's disease, it is improbable that a single targeted drug will prove successful as a therapeutic strategy. Therefore, exploring various hypotheses in drug design is imperative. The sequestration of Fe(II) and Zn(II) cations stands out as a crucial mechanism based on the mitigation of reactive oxygen species.

View Article and Find Full Text PDF

Fragment-based screening has become indispensable in drug discovery. Yet, the weak binding affinities of these small molecules still represent a challenge for the reliable detection of fragment hits. The extent of this issue was illustrated in the literature for the aspartic protease endothiapepsin: When seven biochemical and biophysical in vitro screening methods were applied to screen a library of 361 fragments, very poor overlap was observed between the hit fragments identified by the individual approaches, resulting in high levels of false positive and/or false negative results depending on the mutually compared methods.

View Article and Find Full Text PDF

Neurokinin/tachykinin receptors are classified as the G-protein coupled receptor superfamily. The neurokinin 2 receptor (NK2R) is widely expressed in different tissues. NK2R is associated with a range of biological events, such as inflammation, smooth muscle contraction, intestinal motor functions, and asthma.

View Article and Find Full Text PDF

Background: The Litsea genus has four native species from Mesoamerica. Mez. is a native tree, traditionally used as a condiment and herbal medicine in the region.

View Article and Find Full Text PDF

Pharmacophore Mapping Combined with dbCICA Reveal New Structural Features for the Development of Novel Ligands Targeting α4β2 and α7 Nicotinic Acetylcholine Receptors.

Molecules

November 2022

Laboratory of Medicinal Chemistry, Organic Synthesis and Molecular Modeling (LaQMedSOMM), Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, Jardim Quitandinha, Araraquara 14800-060, SP, Brazil.

The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer's disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!