Solid-phase reducing agents as alternative for reducing disulfide bonds in proteins.

Appl Biochem Biotechnol

Cátedra de Bioquímica, Facultad de Bioquímica, Montevideo, Uruguay.

Published: July 2003

Disulfide reduction of Kluyveromyces lactis and Aspergillus oryzae beta-galactosidases and beta-lactoglobulin was assessed. Reduction was performed using one of two thiol-containing agents: dithiothreitol (DTT) or thiopropyl-agarose with a high degree of substitution (1000 micromol of SH groups/g of dried gel). Both reductants allowed an increase of three- (for K. lactis beta-galactosidase) and fourfold (for A. oryzae beta-galactosidase) in the initial content of SH groups in the lactases. Nearly sevenfold fewer micromoles of SH groups per milligram of protein were needed to perform the reduction of K. lactis beta-galactosidase with thiopropyl-agarose than for the same reduction with DTT. However, for A. oryzae beta-galactosidase, nearly twice as many micromoles of SH groups per milligram of protein were needed with thiopropylagarose than with DTT. Disulfide bonds in beta-lactoglobulin were not accessible to thiopropyl-agarose, since this reduction was only possible in the presence of 6 M urea. These results proved that highly substituted thiopropyl-agarose is as good a reducing agent as DTT, for the reduction of disulfide bonds in proteins. Moreover, excess reducing agent was very simply separated from the reduced protein by filtration, making it easier to control the reaction and providing reduced protein solutions free of reductant. All these advantages substantially cut down the time required and therefore the cost of the overall process.

Download full-text PDF

Source
http://dx.doi.org/10.1385/abab:110:1:23DOI Listing

Publication Analysis

Top Keywords

disulfide bonds
12
bonds proteins
8
lactis beta-galactosidase
8
oryzae beta-galactosidase
8
micromoles groups
8
groups milligram
8
milligram protein
8
protein needed
8
thiopropyl-agarose reduction
8
reducing agent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!