Photosystem I-less Synechocystis 6803 mutants carrying modified PsbH proteins, derived from different combinations of wild-type cyanobacterial and maize genes, were constructed. The mutants were analyzed in order to determine the relative importance of the intra- and extramembrane domains of the PsbH subunit in the functioning of photosystem (PS) II, by a combination of biochemical, biophysical, and physiological approaches. The results confirmed and extended previously published data showing that, besides D1, the whole PsbH protein is necessary to determine the correct structure of a QB/herbicide-binding site. The different turnover of the D1 protein and chlorophyll photobleaching displayed by mutant cells in response to photoinhibitory treatment revealed for the first time the actual role of the PsbH subunit in photoprotection. A functional PsbH protein is necessary for (i) rapid degradation of photodamaged D1 molecules, which is essential to avoid further oxidative damage to the PSII core, and (ii) insertion of newly synthesized D1 molecules into the thylakoid membrane. PsbH is thus required for both initiation and completion of the repair cycle of the PSII complex in cyanobacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M303096200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!