The highly structured organization of tubules and blood vessels in the outer medulla of the mammalian kidney is believed to result in preferential interactions among tubules and vessels; such interactions may promote solute cycling and enhance urine concentrating capability. In this study, we formulate a new model framework for the urine concentrating mechanism in the outer medulla of the rat kidney. The model simulates preferential interactions among tubules and vessels by representing two concentric regions and by specifying the fractions of tubules and vessels assigned to each of the regions. The model equations are based on standard expressions for transmural transport and on solute and water conservation. Model equations, which are derived in dynamic form, are solved to obtain steady-state solutions by means of a stable and efficient numerical method, based on the semi-Lagrangian semi-implicit method and on Newton's method. In this application, the computational cost scales as O(N2), where N is the number of spatial subintervals along the medulla. We present representative solutions and show that the method generates approximations that are second-order accurate in space and that exhibit mass conservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0092-8240(03)00045-4 | DOI Listing |
Microsc Res Tech
January 2025
Department of Anatomy, Erciyes University Faculty of Veterinary Medicine, Kayseri, Türkiye.
In this study, the kidneys of ground squirrels (hibernated and nonhibernated), rabbits, and rats were examined macro and microanatomically. Kidney morphology was investigated by stereo microscopy, light microscopy, and scanning electron microscopy. Triple and immunohistochemical staining were performed for light microscopic examinations.
View Article and Find Full Text PDFRSC Adv
January 2025
Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.
View Article and Find Full Text PDFWe studied the effect of urinary urea concentration on the hemolysin production and cytotoxicity of the uropathogenic Morganella morganii strain MM 190. The highest hemolytic activity of M. morganii cultivated in urine with low urea concentration (23 and 82 mmol/liter) was observed between 3rd and 4th hours of post-inoculation, while in urine with standard urea level (117 mmol/liter), the activity was observed at 5th hour of post-inoculation.
View Article and Find Full Text PDFACS Sens
January 2025
School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
Steroid hormones, especially progesterone (P), estradiol (E), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion.
View Article and Find Full Text PDFJAMA Pediatr
January 2025
Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.
Importance: Previous meta-analyses suggest that fluoride exposure is adversely associated with children's IQ scores. An individual's total fluoride exposure comes primarily from fluoride in drinking water, food, and beverages.
Objective: To perform a systematic review and meta-analysis of epidemiological studies investigating children's IQ scores and prenatal or postnatal fluoride exposure.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!